Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definitions  



1.1  Peak amplitude and semi-amplitude  



1.1.1  Peak amplitude  





1.1.2  Semi-amplitude  





1.1.3  Ambiguity  







1.2  Peak-to-peak amplitude  





1.3  Root mean square amplitude  





1.4  Pulse amplitude  







2 Formal representation  





3 Units  





4 Amplitude envelopes  





5 Amplitude normalization  





6 See also  





7 Notes  














Amplitude






Afrikaans
العربية
Azərbaycanca

Беларуская
Беларуская (тарашкевіца)
Български
Català
Чӑвашла
Čeština
Cymraeg
Dansk
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Gaeilge
Galego

Հայերեն
ि
Hrvatski
Ido
Bahasa Indonesia
Italiano
עברית

Қазақша
Kreyòl ayisyen
Latviešu
Lietuvių
Magyar
Македонски
Bahasa Melayu
Монгол
Nederlands

Norsk bokmål
Norsk nynorsk
Oʻzbekcha / ўзбекча
Polski
Português
Română
Русиньскый
Русский

Simple English
Slovenčina
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Sunda
Suomi
Svenska
ி

Türkçe
Тыва дыл
Українська
اردو
Tiếng Vit



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
Wikiversity
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Amplitudes)

The amplitude of a periodic variable is a measure of its change in a single period (such as timeorspatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of amplitude (see below), which are all functions of the magnitude of the differences between the variable's extreme values. In older texts, the phase of a periodic function is sometimes called the amplitude.[1]

Definitions[edit]

Asinusoidal curve

  1. Peak amplitude (),
  2. Peak-to-peak amplitude (),
  3. Root mean square amplitude (),
  4. Wave period (not an amplitude)

Peak amplitude and semi-amplitude[edit]

For symmetric periodic waves, like sine waves, square wavesortriangle waves peak amplitude and semi amplitude are the same.

Peak amplitude[edit]

Inaudio system measurements, telecommunications and others where the measurand is a signal that swings above and below a reference value but is not sinusoidal, peak amplitude is often used. If the reference is zero, this is the maximum absolute value of the signal; if the reference is a mean value (DC component), the peak amplitude is the maximum absolute value of the difference from that reference.

Semi-amplitude[edit]

Semi-amplitude means half of the peak-to-peak amplitude.[2] The majority of scientific literature[3] employs the term amplitudeorpeak amplitude to mean semi-amplitude.

It is the most widely used measure of orbital wobble in astronomy and the measurement of small radial velocity semi-amplitudes of nearby stars is important in the search for exoplanets (see Doppler spectroscopy).[4]

Ambiguity[edit]

In general, the use of peak amplitude is simple and unambiguous only for symmetric periodic waves, like a sine wave, a square wave, or a triangle wave. For an asymmetric wave (periodic pulses in one direction, for example), the peak amplitude becomes ambiguous. This is because the value is different depending on whether the maximum positive signal is measured relative to the mean, the maximum negative signal is measured relative to the mean, or the maximum positive signal is measured relative to the maximum negative signal (the peak-to-peak amplitude) and then divided by two (the semi-amplitude). In electrical engineering, the usual solution to this ambiguity is to measure the amplitude from a defined reference potential (such as ground or 0 V). Strictly speaking, this is no longer amplitude since there is the possibility that a constant (DC component) is included in the measurement.

Peak-to-peak amplitude[edit]

Peak-to-peak amplitude (abbreviated p–porPtPorPtoP) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope. Peak-to-peak is a straightforward measurement on an oscilloscope, the peaks of the waveform being easily identified and measured against the graticule. This remains a common way of specifying amplitude, but sometimes other measures of amplitude are more appropriate.

Root mean square amplitude[edit]

Root mean square (RMS) amplitude is used especially in electrical engineering: the RMS is defined as the square root of the mean over time of the square of the vertical distance of the graph from the rest state;[5] i.e. the RMS of the AC waveform (with no DC component).

For complicated waveforms, especially non-repeating signals like noise, the RMS amplitude is usually used because it is both unambiguous and has physical significance. For example, the average power transmitted by an acoustic or electromagnetic wave or by an electrical signal is proportional to the square of the RMS amplitude (and not, in general, to the square of the peak amplitude).[6]

For alternating current electric power, the universal practice is to specify RMS values of a sinusoidal waveform. One property of root mean square voltages and currents is that they produce the same heating effect as a direct current in a given resistance.

The peak-to-peak value is used, for example, when choosing rectifiers for power supplies, or when estimating the maximum voltage that insulation must withstand. Some common voltmeters are calibrated for RMS amplitude, but respond to the average value of a rectified waveform. Many digital voltmeters and all moving coil meters are in this category. The RMS calibration is only correct for a sine wave input since the ratio between peak, average and RMS values is dependent on waveform. If the wave shape being measured is greatly different from a sine wave, the relationship between RMS and average value changes. True RMS-responding meters were used in radio frequency measurements, where instruments measured the heating effect in a resistor to measure a current. The advent of microprocessor-controlled meters capable of calculating RMS by sampling the waveform has made true RMS measurement commonplace.

Pulse amplitude[edit]

Intelecommunication, pulse amplitude is the magnitude of a pulse parameter, such as the voltage level, current level, field intensity, or power level.

Pulse amplitude is measured with respect to a specified reference and therefore should be modified by qualifiers, such as average, instantaneous, peak, or root-mean-square.

Pulse amplitude also applies to the amplitude of frequency- and phase-modulated waveform envelopes.[7]

Formal representation[edit]

In this simple wave equation

Units[edit]

The units of the amplitude depend on the type of wave, but are always in the same units as the oscillating variable. A more general representation of the wave equation is more complex, but the role of amplitude remains analogous to this simple case.

For waves on a string, or in a medium such as water, the amplitude is a displacement.

The amplitude of sound waves and audio signals (which relates to the volume) conventionally refers to the amplitude of the air pressure in the wave, but sometimes the amplitude of the displacement (movements of the air or the diaphragm of a speaker) is described.[citation needed] The logarithm of the amplitude squared is usually quoted in dB, so a null amplitude corresponds to − dB. Loudness is related to amplitude and intensity and is one of the most salient qualities of a sound, although in general sounds it can be recognized independently of amplitude. The square of the amplitude is proportional to the intensity of the wave.

For electromagnetic radiation, the amplitude of a photon corresponds to the changes in the electric field of the wave. However, radio signals may be carried by electromagnetic radiation; the intensity of the radiation (amplitude modulation) or the frequency of the radiation (frequency modulation) is oscillated and then the individual oscillations are varied (modulated) to produce the signal.

Amplitude envelopes[edit]

Amplitude envelope refers to the changes in the amplitude of a sound over time, and is an influential property as it affects perception of timbre. A flat tone has a steady state amplitude that remains constant during time, which is represented by a scalar. Other sounds can have percussive amplitude envelopes featuring an abrupt onset followed by an immediate exponential decay.[8]

Percussive amplitude envelopes are characteristic of various impact sounds: two wine glasses clinking together, hitting a drum, slamming a door, etc. where the amplitude is transient and must be represented as either a continuous function or a discrete vector. Percussive amplitude envelopes model many common sounds that have a transient loudness attack, decay, sustain, and release.[9]

Amplitude normalization[edit]

With waveforms containing many overtones, complex transient timbres can be achieved by assigning each overtone to its own distinct transient amplitude envelope. Unfortunately, this has the effect of modulating the loudness of the sound as well. It makes more sense to separate loudness and harmonic quality to be parameters controlled independently of each other.

To do so, harmonic amplitude envelopes are frame-by-frame normalized to become amplitude proportion envelopes, where at each time frame all the harmonic amplitudes will add to 100% (or 1). This way, the main loudness-controlling envelope can be cleanly controlled.[10]

In Sound Recognition, max amplitude normalization can be used to help align the key harmonic features of 2 alike sounds, allowing similar timbres to be recognized independent of loudness.[11][12]

See also[edit]

Notes[edit]

  1. ^ Knopp, Konrad; Bagemihl, Frederick (1996). Theory of Functions Parts I and II. Dover Publications. p. 3. ISBN 978-0-486-69219-7.
  • ^ Tatum, J. B. Physics  – Celestial Mechanics. Paragraph 18.2.12. 2007. Retrieved 2008-08-22.
  • ^ Regents of the University of California. Universe of Light: What is the Amplitude of a Wave? 1996. Retrieved 2008-08-22.
  • ^ Goldvais, Uriel A. Exoplanets Archived 2021-03-03 at the Wayback Machine, pp. 2–3. Retrieved 2008-08-22.
  • ^ Department of Communicative Disorders University of Wisconsin–Madison. RMS Amplitude Archived 2013-09-11 at the Wayback Machine. Retrieved 2008-08-22.
  • ^ Ward, Electrical Engineering Science, pp. 141–142, McGraw-Hill, 1971.
  • ^ Public Domain This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22.
  • ^ "amplitude envelope". MAPLE Lab. Retrieved 2023-10-30.
  • ^ Schutz, Michael; Gillard, Jessica (June 2020). "On the generalization of tones: A detailed exploration of non-speech auditory perception stimuli". Scientific Reports. 10.
  • ^ "Additive Sound Synthesizer Project with CODE!". www.pitt.edu.[permanent dead link]
  • ^ "Sound Sampling, Analysis, and Recognition". www.pitt.edu.[permanent dead link]
  • ^ rblack37 (2 January 2018). "I wrote a Sound Recognition Application". Archived from the original on 2021-11-08 – via YouTube.{{cite web}}: CS1 maint: numeric names: authors list (link)

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Amplitude&oldid=1226759177"

    Categories: 
    Physical quantities
    Sound
    Wave mechanics
    Hidden categories: 
    Webarchive template wayback links
    Wikipedia articles incorporating text from the Federal Standard 1037C
    All articles with dead external links
    Articles with dead external links from August 2023
    Articles with permanently dead external links
    CS1 maint: numeric names: authors list
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from May 2024
    Articles with GND identifiers
     



    This page was last edited on 1 June 2024, at 17:05 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki