Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Schematic symbol  





2 Analog voltmeter  





3 Amplified voltmeter  





4 Digital voltmeter  





5 See also  





6 References  





7 External links  














Voltmeter






العربية
Azərbaycanca

Беларуская
Български
Bosanski
Català
Čeština
Cymraeg
Dansk
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Gaeilge

Հայերեն
ि
Hrvatski
Ido
Bahasa Indonesia
Italiano
עברית


Қазақша
Кыргызча
Latviešu
Lietuvių
Македонски


Nederlands

Norsk bokmål
Norsk nynorsk
Oʻzbekcha / ўзбекча
Piemontèis
Polski
Português
Română
Русский
Scots
Shqip

Simple English
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Sunda
Suomi
ி

Тоҷикӣ
Türkçe
Тыва дыл
Українська
Tiếng Vit



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Demonstration analog voltmeter

Avoltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel. It usually has a high resistance so that it takes negligible current from the circuit.

Analog voltmeters move a pointer across a scale in proportion to the voltage measured and can be built from a galvanometer and series resistor. Meters using amplifiers can measure tiny voltages of microvolts or less. Digital voltmeters give a numerical display of voltage by use of an analog-to-digital converter.

Voltmeters are made in a wide range of styles, some separately powered (e.g. by battery), and others powered by the measured voltage source itself. Instruments permanently mounted in a panel are used to monitor generators or other fixed apparatus. Portable instruments, usually equipped to also measure current and resistance in the form of a multimeter are standard test instruments used in electrical and electronics work. Any measurement that can be converted to a voltage can be displayed on a meter that is suitably calibrated; for example, pressure, temperature, flow or level in a chemical process plant.

General-purpose analog voltmeters may have an accuracy of a few percent of full scale and are used with voltages from a fraction of a volt to several thousand volts. Digital meters can be made with high accuracy, typically better than 1%. Specially calibrated test instruments have higher accuracies, with laboratory instruments capable of measuring to accuracies of a few parts per million. Part of the problem of making an accurate voltmeter is that of calibration to check its accuracy. In laboratories, the Weston cell is used as a standard voltage for precision work. Precision voltage references are available based on electronic circuits.

Schematic symbol

[edit]
Voltmeter symbol

In circuit diagrams, a voltmeter is represented by the letter V in a circle, with two emerging lines representing the two points of measurement.

Analog voltmeter

[edit]
A moving coil galvanometer of the d'Arsonval type.

  • The red wire carries the current to be measured.
  • The restoring spring is shown in green.
  • N and S are the north and south poles of the magnet.

A moving coil galvanometer can be used as a voltmeter by inserting a resistorinseries with the instrument. The galvanometer has a coil of fine wire suspended in a strong magnetic field. When an electric current is applied, the interaction of the magnetic field of the coil and of the stationary magnet creates a torque, tending to make the coil rotate. The torque is proportional to the current through the coil. The coil rotates, compressing a spring that opposes the rotation. The deflection of the coil is thus proportional to the current, which in turn is proportional to the applied voltage, which is indicated by a pointer on a scale.

One of the design objectives of the instrument is to disturb the circuit as little as possible and so the instrument should draw a minimum of current to operate. This is achieved by using a sensitive galvanometer in series with a high resistance, and then the entire instrument is connected in parallel with the circuit examined.

The sensitivity of such a meter can be expressed as "ohms per volt", the number of ohms resistance in the meter circuit divided by the full scale measured value. For example, a meter with a sensitivity of 1000 ohms per volt would draw 1 milliampere at full scale voltage; if the full scale was 200 volts, the resistance at the instrument's terminals would be 200000 ohms and at full scale, the meter would draw 1 milliampere from the circuit under test. For multi-range instruments, the input resistance varies as the instrument is switched to different ranges.

Moving-coil instruments with a permanent-magnet field respond only to direct current. Measurement of AC voltage requires a rectifier in the circuit so that the coil deflects in only one direction. Some moving-coil instruments are also made with the zero position in the middle of the scale instead of at one end; these are useful if the voltage reverses its polarity.

Voltmeters operating on the electrostatic principle use the mutual repulsion between two charged plates to deflect a pointer attached to a spring. Meters of this type draw negligible current but are sensitive to voltages over about 100 volts and work with either alternating or direct current.

Amplified voltmeter

[edit]

The sensitivity and input resistance of a voltmeter can be increased if the current required to deflect the meter pointer is supplied by an amplifier and power supply instead of by the circuit under test. The electronic amplifier between input and meter gives two benefits; a rugged moving coil instrument can be used, since its sensitivity need not be high, and the input resistance can be made high, reducing the current drawn from the circuit under test. Amplified voltmeters often have an input resistance of 1, 10, or 20 megohms which is independent of the range selected. A once-popular form of this instrument used a vacuum tube in the amplifier circuit and so was called the vacuum tube voltmeter (VTVM). These were almost always powered by the local AC line current and so were not particularly portable. Today these circuits use a solid-state amplifier using field-effect transistors, hence FET-VM, and appear in handheld digital multimeters as well as in bench and laboratory instruments. These largely replaced non-amplified multimeters except in the least expensive price ranges.

Most VTVMs and FET-VMs handle DC voltage, AC voltage, and resistance measurements; modern FET-VMs add current measurements and often other functions as well. A specialized form of the VTVM or FET-VM is the AC voltmeter. These instruments are optimized for measuring AC voltage. They have much wider bandwidth and better sensitivity than a typical multifunction device.

Digital voltmeter

[edit]
Two digital voltmeters. Note the 40 microvolt difference between the two measurements, an offset of 34 parts per million.

Adigital voltmeter (DVM) measures an unknown input voltage by converting the voltage to a digital value and then displays the voltage in numeric form. DVMs are usually designed around a special type of analog-to-digital converter called an integrating converter.

DVM measurement accuracy is affected by many factors, including temperature, input impedance, and DVM power supply voltage variations. Less expensive DVMs often have input resistance on the order of 10 MΩ. Precision DVMs can have input resistances of 1 GΩ or higher for the lower voltage ranges (e.g. less than 20 V). To ensure that a DVM's accuracy is within the manufacturer's specified tolerances, it must be periodically calibrated against a voltage standard such as the Weston cell.

The first digital voltmeter was invented and produced by Andrew Kay of Non-Linear Systems (and later founder of Kaypro) in 1954.[1]

Simple AC voltmeters use a rectifier connected to a DC measurement circuit, which responds to the average value of the waveform. The meter can be calibrated to display the root mean square value of the waveform, assuming a fixed relation between the average value of the rectified waveform and the RMS value. If the waveform departs significantly from the sinewave assumed in the calibration, the meter will be inaccurate, though for simple wave shapes the reading can be corrected by multiplying by a constant factor. Early "true RMS" circuits used a thermal converter that responded only to the RMS value of the waveform. Modern instruments calculate the RMS value by electronically calculating the square of the input value, taking the average, and then calculating the square root of the value. This allows accurate RMS measurements for a variety of waveforms.[2]

See also

[edit]

References

[edit]
  1. ^ Markoff, John (5 Sep 2014). "Andrew Kay, Pioneer in Computing, Dies at 95". Obituary. New York Times. Retrieved 7 September 2014.
  • ^ "What is RMS Voltage". Electrical4U. 2021-06-21. Retrieved 2023-04-23.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Voltmeter&oldid=1225804543"

    Categories: 
    Electrical meters
    Measuring instruments
    Electronic test equipment
    Voltmeters
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from April 2009
    All articles needing additional references
    Articles needing additional references from February 2024
    Articles with multiple maintenance issues
    Commons category link is on Wikidata
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NDL identifiers
     



    This page was last edited on 26 May 2024, at 20:41 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki