Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Precursor and types  



1.1  Angiotensinogen  





1.2  Angiotensin I  





1.3  Angiotensin II  





1.4  Angiotensin III  





1.5  Angiotensin IV  







2 Effects  



2.1  Adipic  





2.2  Cardiovascular  





2.3  Neural  





2.4  Adrenal  





2.5  Renal  







3 See also  





4 References  





5 Further reading  





6 External links  














Angiotensin






العربية
Български
Bosanski
Català
Čeština
Cymraeg
Deutsch
ދިވެހިބަސް
Eesti
Español
Euskara
فارسی
Français
Galego

Hrvatski
Bahasa Indonesia
Italiano
עברית
Magyar
Македонски
Nederlands

Oʻzbekcha / ўзбекча
Polski
Română
Русский
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
ி
Türkçe
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Angiotensin II)

This article needs additional citations for verification. Please help improve this articlebyadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Angiotensin" – news · newspapers · books · scholar · JSTOR
(March 2020) (Learn how and when to remove this message)

angiotensins

Identifiers

Aliases

angiotensin

External IDs

GeneCards: [1]; OMA:- orthologs

Species

Human

Mouse

Entrez

Ensembl

UniProt

RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)

n/a

n/a

PubMed search

n/a

n/a

Wikidata

Angiotensin is a peptide hormone that causes vasoconstriction and an increase in blood pressure. It is part of the renin–angiotensin system, which regulates blood pressure. Angiotensin also stimulates the release of aldosterone from the adrenal cortex to promote sodium retention by the kidneys.

Anoligopeptide, angiotensin is a hormone and a dipsogen. It is derived from the precursor molecule angiotensinogen, a serum globulin produced in the liver. Angiotensin was isolated in the late 1930s (first named 'angiotonin' or 'hypertensin') and subsequently characterized and synthesized by groups at the Cleveland Clinic and Ciba laboratories.[1]

Precursor and types[edit]

Angiotensinogen[edit]

Crystal structure of reactive center loop cleaved angiotensinogen via x-ray diffraction

AGT

Available structures

PDB

Ortholog search: PDBe RCSB

List of PDB id codes

2WXW, 2X0B, 4APH,%%s1N9U, 1N9V,%%s1N9V, 1N9U, 3CK0, 4AA1, 4APH, 5E2Q

Identifiers

Aliases

AGT, ANHU, SERPINA8, hFLT1, angiotensinogen

External IDs

MGI: 87963; HomoloGene: 14; GeneCards: AGT; OMA:AGT - orthologs

Gene location (Human)

Chromosome 1 (human)

Chr.

Chromosome 1 (human)[2]

Chromosome 1 (human)

Genomic location for AGT

Genomic location for AGT

Band

1q42.2

Start

230,690,776 bp[2]

End

230,745,576 bp[2]

Gene location (Mouse)

Chromosome 8 (mouse)

Chr.

Chromosome 8 (mouse)[3]

Chromosome 8 (mouse)

Genomic location for AGT

Genomic location for AGT

Band

8 E2|8 72.81 cM

Start

125,283,273 bp[3]

End

125,296,445 bp[3]

Bgee

Mouse (ortholog)


  • right lobe of liver

  • external globus pallidus

  • dorsal motor nucleus of vagus nerve

  • superior vestibular nucleus

  • pars reticulata

  • paraflocculus of cerebellum

  • inferior olivary nucleus

  • ventral tegmental area

  • amygdala

  • parotid gland

  • lumbar subsegment of spinal cord

  • paraventricular nucleus of hypothalamus

  • central gray substance of midbrain

  • deep cerebellar nuclei

  • dorsal tegmental nucleus

  • superior colliculus

  • globus pallidus

  • medulla oblongata
  • More reference expression data

    BioGPS

    More reference expression data

    Molecular function

  • serine-type endopeptidase inhibitor activity
  • type 1 angiotensin receptor binding
  • hormone activity
  • superoxide-generating NADPH oxidase activator activity
  • growth factor activity
  • type 2 angiotensin receptor binding
  • sodium channel regulator activity
  • angiotensin receptor binding
  • receptor ligand activity
  • Cellular component

  • extracellular exosome
  • blood microparticle
  • extracellular space
  • cytosol
  • extracellular region
  • collagen-containing extracellular matrix
  • Biological process

  • renal system process
  • vasoconstriction
  • positive regulation of catalytic activity
  • positive regulation of cardiac muscle hypertrophy
  • cell surface receptor signaling pathway
  • cellular response to mechanical stimulus
  • stress-activated MAPK cascade
  • artery smooth muscle contraction
  • regulation of systemic arterial blood pressure by renin-angiotensin
  • regulation of apoptotic process
  • negative regulation of neurotrophin TRK receptor signaling pathway
  • regulation of long-term neuronal synaptic plasticity
  • positive regulation of renal sodium excretion
  • positive regulation of fibroblast proliferation
  • cellular sodium ion homeostasis
  • ERK1 and ERK2 cascade
  • activation of phospholipase C activity
  • angiotensin maturation
  • positive regulation of extracellular matrix constituent secretion
  • positive regulation of blood pressure
  • negative regulation of cell growth
  • regulation of norepinephrine secretion
  • female pregnancy
  • negative regulation of tissue remodeling
  • regulation of heart rate
  • smooth muscle cell proliferation
  • regulation of calcium ion transport
  • regulation of transmission of nerve impulse
  • cell growth involved in cardiac muscle cell development
  • response to muscle activity involved in regulation of muscle adaptation
  • positive regulation of nitric oxide biosynthetic process
  • angiotensin-mediated drinking behavior
  • cell-cell signaling
  • human ageing
  • vasodilation
  • positive regulation of cell population proliferation
  • fibroblast proliferation
  • negative regulation of angiogenesis
  • positive regulation of superoxide anion generation
  • positive regulation of L-lysine import across plasma membrane
  • positive regulation of cardiac muscle cell apoptotic process
  • positive regulation of vascular associated smooth muscle cell proliferation
  • positive regulation of cytosolic calcium ion concentration
  • negative regulation of endopeptidase activity
  • positive regulation of vascular associated smooth muscle cell migration
  • regulation of molecular function
  • regulation of lipid metabolic process
  • positive regulation of L-arginine import across plasma membrane
  • regulation of signaling receptor activity
  • positive regulation of neuron projection development
  • response to estradiol
  • cellular response to angiotensin
  • protein import into nucleus
  • associative learning
  • operant conditioning
  • positive regulation of insulin receptor signaling pathway
  • regulation of extracellular matrix assembly
  • positive regulation of cholesterol esterification
  • phospholipase C-activating G protein-coupled receptor signaling pathway
  • blood vessel remodeling
  • positive regulation of reactive oxygen species metabolic process
  • positive regulation of extrinsic apoptotic signaling pathway
  • positive regulation of protein metabolic process
  • positive regulation of branching involved in ureteric bud morphogenesis
  • kidney development
  • positive regulation of transcription, DNA-templated
  • positive regulation of peptidyl-tyrosine phosphorylation
  • positive regulation of inflammatory response
  • positive regulation of protein tyrosine kinase activity
  • regulation of blood pressure
  • positive regulation of macrophage derived foam cell differentiation
  • regulation of vasoconstriction
  • positive regulation of NF-kappaB transcription factor activity
  • positive regulation of NAD(P)H oxidase activity
  • nitric oxide mediated signal transduction
  • G protein-coupled receptor signaling pathway coupled to cGMP nucleotide second messenger
  • positive regulation of epidermal growth factor receptor signaling pathway
  • regulation of blood volume by renin-angiotensin
  • regulation of cardiac conduction
  • maintenance of blood vessel diameter homeostasis by renin-angiotensin
  • regulation of renal sodium excretion
  • positive regulation of cytokine production
  • positive regulation of membrane hyperpolarization
  • negative regulation of sodium ion transmembrane transporter activity
  • renin-angiotensin regulation of aldosterone production
  • positive regulation of endothelial cell migration
  • low-density lipoprotein particle remodeling
  • regulation of cell population proliferation
  • regulation of cell growth
  • positive regulation of gap junction assembly
  • positive regulation of phosphatidylinositol 3-kinase signaling
  • angiotensin-activated signaling pathway
  • negative regulation of gene expression
  • regulation of renal output by angiotensin
  • positive regulation of activation of Janus kinase activity
  • G protein-coupled receptor signaling pathway
  • Sources:Amigo / QuickGO

    Species

    Human

    Mouse

    Entrez

    Ensembl

    UniProt

    RefSeq (mRNA)

    NM_000029
    NM_001382817
    NM_001384479

    NM_007428

    RefSeq (protein)

    NP_000020
    NP_001369746

    NP_031454

    Location (UCSC)

    Chr 1: 230.69 – 230.75 Mb

    Chr 8: 125.28 – 125.3 Mb

    PubMed search

    [4]

    [5]

    Wikidata

    Angiotensinogen is an α-2-globulin synthesized in the liver[6] and is a precursor for angiotensin, but has also been indicated as having many other roles not related to angiotensin peptides.[7] It is a member of the serpin family of proteins, leading to another name: Serpin A8,[8] although it is not known to inhibit other enzymes like most serpins. In addition, a generalized crystal structure can be estimated by examining other proteins of the serpin family, but angiotensinogen has an elongated N-terminus compared to other serpin family proteins.[9] Obtaining actual crystals for X-ray diffractometric analysis is difficult in part due to the variability of glycosylation that angiotensinogen exhibits. The non-glycosylated and fully glycosylated states of angiotensinogen also vary in molecular weight, the former weighing 53 kDa and the latter weighing 75 kDa, with a plethora of partially glycosylated states weighing in between these two values.[7]

    Angiotensinogen is also known as renin substrate. It is cleaved at the N-terminus by renin to result in angiotensin I, which will later be modified to become angiotensin II.[7][9] This peptide is 485 amino acids long, and 10 N-terminus amino acids are cleaved when renin acts on it.[7] The first 12 amino acids are the most important for activity.

    Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Val-Ile-...[clarification needed]

    Plasma angiotensinogen levels are increased by plasma corticosteroid, estrogen, thyroid hormone, and angiotensin II levels. In mice with a full body deficit of angiotensinogen, the effects observed were low newborn survival rate, stunted body weight gain, stunted growth, and abnormal renal development.[7]

    Angiotensin I[edit]

    Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu | Val-Ile-...[clarification needed]
    Renin–angiotensin–aldosterone system

    Angiotensin I (CAS# 11128-99-7), officially called proangiotensin, is formed by the action of reninonangiotensinogen. Renin cleaves the peptide bond between the leucine (Leu) and valine (Val) residues on angiotensinogen, creating the decapeptide (ten amino acid) (des-Asp) angiotensin I. Renin is produced in the kidneys in response to renal sympathetic activity, decreased intrarenal blood pressure (<90mmHg systolic blood pressure[10] ) at the juxtaglomerular cells, dehydration or decreased delivery of Na+ and Cl- to the macula densa.[11] If a reduced NaCl concentration[12] in the distal tubule is sensed by the macula densa, renin release by juxtaglomerular cells is increased. This sensing mechanism for macula densa-mediated renin secretion appears to have a specific dependency on chloride ions rather than sodium ions. Studies using isolated preparations of thick ascending limb with glomerulus attached in low NaCl perfusate were unable to inhibit renin secretion when various sodium salts were added but could inhibit renin secretion with the addition of chloride salts.[13] This, and similar findings obtained in vivo,[14] has led some to believe that perhaps "the initiating signal for MD control of renin secretion is a change in the rate of NaCl uptake predominantly via a luminal Na,K,2Cl co-transporter whose physiological activity is determined by a change in luminal Cl concentration."[15]

    Angiotensin I appears to have no direct biological activity and exists solely as a precursor to angiotensin II.

    Angiotensin II[edit]

    Asp-Arg-Val-Tyr-Ile-His-Pro-Phe[clarification needed]

    Angiotensin I is converted to angiotensin II (AII) through removal of two C-terminal residues by the enzyme angiotensin-converting enzyme (ACE), primarily through ACE within the lung (but also present in endothelial cells, kidney epithelial cells, and the brain). Angiotensin II acts on the central nervous system to increase vasopressin production, and also acts on venous and arterial smooth muscle to cause vasoconstriction. Angiotensin II also increases aldosterone secretion; it therefore acts as an endocrine, autocrine/paracrine, and intracrine hormone.

    ACE is a target of ACE inhibitor drugs, which decrease the rate of angiotensin II production. Angiotensin II increases blood pressure by stimulating the Gq protein in vascular smooth muscle cells (which in turn activates an IP3-dependent mechanism leading to a rise in intracellular calcium levels and ultimately causing contraction). In addition, angiotensin II acts at the Na+/H+ exchanger in the proximal tubules of the kidney to stimulate Na+ reabsorption and H+ excretion which is coupled to bicarbonate reabsorption. This ultimately results in an increase in blood volume, pressure, and pH.[16] Hence, ACE inhibitors are major anti-hypertensive drugs.

    Other cleavage products of ACE, seven or nine amino acids long, are also known; they have differential affinity for angiotensin receptors, although their exact role is still unclear. The action of AII itself is targeted by angiotensin II receptor antagonists, which directly block angiotensin II AT1 receptors.

    Angiotensin II is degraded to angiotensin III by angiotensinases located in red blood cells and the vascular beds of most tissues. Angiotensin II has a half-life in circulation of around 30 seconds,[17] whereas, in tissue, it may be as long as 15–30 minutes.

    Angiotensin II results in increased inotropy, chronotropy, catecholamine (norepinephrine) release, catecholamine sensitivity, aldosterone levels, vasopressin levels, and cardiac remodeling and vasoconstriction through AT1 receptors on peripheral vessels (conversely, AT2 receptors impair cardiac remodeling). This is why ACE inhibitors and ARBs help to prevent remodeling that occurs secondary to angiotensin II and are beneficial in congestive heart failure.[15]

    Angiotensin III[edit]

    Asp | Arg-Val-Tyr-Ile-His-Pro-Phe[clarification needed]

    Angiotensin III, along with angiotensin II, is considered an active peptide derived from angiotensinogen.[18]

    Angiotensin III has 40% of the pressor activity of angiotensin II, but 100% of the aldosterone-producing activity. Increases mean arterial pressure. It is a peptide that is formed by removing an amino acid from angiotensin II by glutamyl aminopeptidase A, which cleaves the N-terminal Asp residue.[19]

    Activation of the AT2 receptor by angiotensin III triggers natriuresis, while AT2 activation via angiotensin II does not. This natriuretic response via angiotensin III occurs when the AT1 receptor is blocked.[20]

    Angiotensin IV[edit]

    Arg | Val-Tyr-Ile-His-Pro-Phe[clarification needed]

    Angiotensin IV is a hexapeptide that, like angiotensin III, has some lesser activity. Angiotensin IV has a wide range of activities in the central nervous system.[21][22]

    The exact identity of AT4 receptors has not been established. There is evidence that the AT4 receptor is insulin-regulated aminopeptidase (IRAP).[23] There is also evidence that angiotensin IV interacts with the HGF system through the c-Met receptor.[24][25]

    Synthetic small molecule analogues of angiotensin IV with the ability to penetrate through blood brain barrier have been developed.[25]

    The AT4 site may be involved in memory acquisition and recall, as well as blood flow regulation.[26] Angiotensin IV and its analogs may also benefit spatial memory tasks such as object recognition and avoidance (conditioned and passive avoidance).[27] Studies have also shown that the usual biological effects of angiotensin IV on the body are not affected by common AT2 receptor antagonists such as the hypertension medication Losartan.[27]

    Effects[edit]

    See also Renin–angiotensin system#Effects

    Angiotensins II, III and IV have a number of effects throughout the body:

    Adipic[edit]

    Angiotensins "modulate fat mass expansion through upregulation of adipose tissue lipogenesis ... and downregulation of lipolysis."[28]

    Cardiovascular[edit]

    Angiotensins are potent direct vasoconstrictors, constricting arteries and increasing blood pressure. This effect is achieved through activation of the GPCR AT1, which signals through a Gq protein to activate phospholipase C, and subsequently increase intracellular calcium.[29]

    Angiotensin II has prothrombotic potential through adhesion and aggregation of platelets and stimulation of PAI-1 and PAI-2.[30][31]

    Neural[edit]

    Angiotensin II increases thirst sensation (dipsogen) through the area postrema and subfornical organ of the brain,[32][33][34] decreases the response of the baroreceptor reflex, increases the desire for salt, increases secretion of ADH from the posterior pituitary, and increases secretion of ACTH from the anterior pituitary.[32] Some evidence suggests that it acts on the organum vasculosum of the lamina terminalis (OVLT) as well.[35]

    Adrenal[edit]

    Angiotensin II acts on the adrenal cortex, causing it to release aldosterone, a hormone that causes the kidneys to retain sodium and lose potassium. Elevated plasma angiotensin II levels are responsible for the elevated aldosterone levels present during the luteal phase of the menstrual cycle.

    Renal[edit]

    Angiotensin II has a direct effect on the proximal tubules to increase Na+ reabsorption. It has a complex and variable effect on glomerular filtration and renal blood flow depending on the setting. Increases in systemic blood pressure will maintain renal perfusion pressure; however, constriction of the afferent and efferent glomerular arterioles will tend to restrict renal blood flow. The effect on the efferent arteriolar resistance is, however, markedly greater, in part due to its smaller basal diameter; this tends to increase glomerular capillary hydrostatic pressure and maintain glomerular filtration rate. A number of other mechanisms can affect renal blood flow and GFR. High concentrations of Angiotensin II can constrict the glomerular mesangium, reducing the area for glomerular filtration. Angiotensin II is a sensitizer to tubuloglomerular feedback, preventing an excessive rise in GFR. Angiotensin II causes the local release of prostaglandins, which, in turn, antagonize renal vasoconstriction. The net effect of these competing mechanisms on glomerular filtration will vary with the physiological and pharmacological environment.

    Direct Renal effects of angiotensin II (not including aldosterone release)

    Target

    Action

    Mechanism[36]

    renal artery &
    afferent arterioles

    vasoconstriction (weaker)

    VDCCsCa2+ influx

    efferent arteriole

    vasoconstriction (stronger)

    (probably) activate Angiotensin receptor 1 → Activation of Gq → ↑PLC activity → ↑IP3 and DAG → activation of IP3 receptorinSR → ↑intracellular Ca2+

    mesangial cells

    contraction → ↓filtration area

    proximal tubule

    increased Na+ reabsorption

    tubuloglomerular feedback

    increased sensitivity

    increase in afferent arteriole responsiveness to signals from macula densa

    medullary blood flow

    reduction

    See also[edit]

  • Angiotensin receptor
  • Angiotensin II receptor antagonist
  • Captopril
  • Perindopril
  • Renin inhibitor
  • References[edit]

    1. ^ Basso N, Terragno NA (December 2001). "History about the discovery of the renin-angiotensin system". Hypertension. 38 (6): 1246–9. doi:10.1161/hy1201.101214. PMID 11751697.
  • ^ a b c GRCh38: Ensembl release 89: ENSG00000135744Ensembl, May 2017
  • ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000031980Ensembl, May 2017
  • ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  • ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  • ^ "Angiotensin | Hormone Health Network". www.hormone.org. Retrieved 2019-12-02.
  • ^ a b c d e Lu H, Cassis LA, Kooi CW, Daugherty A (July 2016). "Structure and functions of angiotensinogen". Hypertension Research. 39 (7): 492–500. doi:10.1038/hr.2016.17. PMC 4935807. PMID 26888118.
  • ^ "AGT - Angiotensinogen precursor - Homo sapiens (Human) - AGT gene & protein". www.uniprot.org. Retrieved 2019-12-02.
  • ^ a b Streatfeild-James RM, Williamson D, Pike RN, Tewksbury D, Carrell RW, Coughlin PB (October 1998). "Angiotensinogen cleavage by renin: importance of a structurally constrained N-terminus". FEBS Letters. 436 (2): 267–270. Bibcode:1998FEBSL.436..267S. doi:10.1016/S0014-5793(98)01145-4. PMID 9781693. S2CID 29751589.
  • ^ Preston RA, Materson BJ, Reda DJ, Williams DW, Hamburger RJ, Cushman WC, Anderson RJ (October 1998). "Age-race subgroup compared with renin profile as predictors of blood pressure response to antihypertensive therapy. Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents". JAMA. 280 (13): 1168–72. doi:10.1001/jama.280.13.1168. PMID 9777817.
  • ^ Williams GH, Dluhy RG (2008). "Chapter 336: Disorders of the Adrenal Cortex". In Loscalzo J, Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL (eds.). Harrison's principles of internal medicine. McGraw-Hill Medical. ISBN 978-0-07-146633-2.
  • ^ Skott O, Briggs JP (1987). "Direct demonstration of macula densa-mediated renin secretion". Science. 237 (4822): 1618–1620. Bibcode:1987Sci...237.1618S. doi:10.1126/science.3306925. PMID 3306925.
  • ^ Kirchner KA, Kotchen TA, Galla JH, Luke RG (November 1978). "Importance of chloride for acute inhibition of renin by sodium chloride". The American Journal of Physiology. 235 (5): F444–50. doi:10.1152/ajprenal.1978.235.5.F444. PMID 31796.
  • ^ Kim SM, Mizel D, Huang YG, Briggs JP, Schnermann J (May 2006). "Adenosine as a mediator of macula densa-dependent inhibition of renin secretion". American Journal of Physiology. Renal Physiology. 290 (5): F1016–23. doi:10.1152/ajprenal.00367.2005. PMID 16303857. S2CID 270730.
  • ^ a b Schnermann JB, Castrop H (2013). "Function of the Juxtaglomerular Apparatus". In Alpern RJ, Moe OW, Caplan M (eds.). Seldin and Giebisch's the Kidney (Fifth ed.). Academic Press. pp. 757–801. doi:10.1016/B978-0-12-381462-3.00023-9. ISBN 978-0-12-381462-3.
  • ^ Le T (2012). First Aid for the Basic Sciences. Organ Systems. McGraw-Hill. p. 625.
  • ^ Patel P, Sanghavi D, Morris DL, Kahwaji CI (2023). "Angiotensin II". StatPearls. StatPearls Publishing. PMID 29763087.
  • ^ Wright JW, Mizutani S, Harding JW (2012). "Focus on Brain Angiotensin III and Aminopeptidase A in the Control of Hypertension". International Journal of Hypertension. 2012: 124758. doi:10.1155/2012/124758. PMC 3389720. PMID 22792446.
  • ^ "Angiotensin III". PubChem. NIH. Retrieved 9 May 2019.
  • ^ Padia SH, Howell NL, Siragy HM, Carey RM (March 2006). "Renal angiotensin type 2 receptors mediate natriuresis via angiotensin III in the angiotensin II type 1 receptor-blocked rat". Hypertension. 47 (3): 537–544. doi:10.1161/01.HYP.0000196950.48596.21. PMID 16380540. S2CID 37807540.
  • ^ Chai SY, Fernando R, Peck G, Ye SY, Mendelsohn FA, Jenkins TA, Albiston AL (November 2004). "The angiotensin IV/AT4 receptor". Cellular and Molecular Life Sciences. 61 (21): 2728–2737. doi:10.1007/s00018-004-4246-1. PMID 15549174. S2CID 22816307.
  • ^ Gard PR (December 2008). "Cognitive-enhancing effects of angiotensin IV". BMC Neuroscience. 9 (Suppl 2): S15. doi:10.1186/1471-2202-9-S2-S15. PMC 2604899. PMID 19090988.
  • ^ Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FA, Simpson RJ, Connolly LM, Chai SY (December 2001). "Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase". The Journal of Biological Chemistry. 276 (52): 48623–6. doi:10.1074/jbc.C100512200. PMID 11707427.
  • ^ Wright JW, Harding JW (2015-01-01). "The Brain Hepatocyte Growth Factor/c-Met Receptor System: A New Target for the Treatment of Alzheimer's Disease". Journal of Alzheimer's Disease. 45 (4): 985–1000. doi:10.3233/JAD-142814. PMID 25649658.
  • ^ a b Wright JW, Kawas LH, Harding JW (February 2015). "The development of small molecule angiotensin IV analogs to treat Alzheimer's and Parkinson's diseases". Progress in Neurobiology. 125: 26–46. doi:10.1016/j.pneurobio.2014.11.004. PMID 25455861. S2CID 41360989.
  • ^ Wright JW, Krebs LT, Stobb JW, Harding JW (January 1995). "The angiotensin IV system: functional implications". Frontiers in Neuroendocrinology. 16 (1): 23–52. doi:10.1006/frne.1995.1002. PMID 7768321. S2CID 20552386.
  • ^ a b Ho JK, Nation DA (September 2018). "Cognitive benefits of angiotensin IV and angiotensin-(1-7): A systematic review of experimental studies". Neuroscience and Biobehavioral Reviews. 92: 209–225. doi:10.1016/j.neubiorev.2018.05.005. PMC 8916541. PMID 29733881. S2CID 13686581.
  • ^ Yvan-Charvet L, Quignard-Boulangé A (January 2011). "Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity". Kidney International. 79 (2): 162–8. doi:10.1038/ki.2010.391. PMID 20944545.
  • ^ Kanaide H, Ichiki T, Nishimura J, Hirano K (November 2003). "Cellular mechanism of vasoconstriction induced by angiotensin II: it remains to be determined". Circulation Research. 93 (11): 1015–7. doi:10.1161/01.RES.0000105920.33926.60. PMID 14645130.
  • ^ Skurk T, Lee YM, Hauner H (May 2001). "Angiotensin II and its metabolites stimulate PAI-1 protein release from human adipocytes in primary culture". Hypertension. 37 (5): 1336–40. doi:10.1161/01.HYP.37.5.1336. PMID 11358950.
  • ^ Gesualdo L, Ranieri E, Monno R, Rossiello MR, Colucci M, Semeraro N, Grandaliano G, Schena FP, Ursi M, Cerullo G (August 1999). "Angiotensin IV stimulates plasminogen activator inhibitor-1 expression in proximal tubular epithelial cells". Kidney International. 56 (2): 461–70. doi:10.1046/j.1523-1755.1999.00578.x. PMID 10432384.
  • ^ a b Johnson AK, Gross PM (May 1993). "Sensory circumventricular organs and brain homeostatic pathways". FASEB Journal. 7 (8): 678–86. doi:10.1096/fasebj.7.8.8500693. PMID 8500693. S2CID 13339562.
  • ^ Shaver SW, Kadekaro M, Gross PM (December 1989). "High metabolic activity in the dorsal vagal complex of Brattleboro rats". Brain Research. 505 (2): 316–20. doi:10.1016/0006-8993(89)91459-5. PMID 2598049. S2CID 32921413.
  • ^ Gross PM, Wainman DS, Shaver SW, Wall KM, Ferguson AV (March 1990). "Metabolic activation of efferent pathways from the rat area postrema". The American Journal of Physiology. 258 (3 Pt 2): R788-97. doi:10.1152/ajpregu.1990.258.3.R788. PMID 2316724.
  • ^ Barrett KE, Barman SM, Brooks HL, Yuan JX, Ganong WF (2019). Ganong's review of medical physiology (26th ed.). New York. p. 304. ISBN 978-1260122404. OCLC 1076268769.{{cite book}}: CS1 maint: location missing publisher (link)
  • ^ Boulpaep EL, Boron WF (2005). Medical Physiology: a Cellular and Molecular Approach. St. Louis, Mo: Elsevier Saunders. p. 771. ISBN 978-1-4160-2328-9.
  • Further reading[edit]

    • de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (September 2000). "International union of pharmacology. XXIII. The angiotensin II receptors". Pharmacological Reviews. 52 (3): 415–72. PMID 10977869.
  • Brenner & Rector's The Kidney, 7th ed., Saunders, 2004.
  • Mosby's Medical Dictionary, 3rd Ed., CV Mosby Company, 1990.
  • Review of Medical Physiology, 20th Ed., William F. Ganong, McGraw-Hill, 2001.
  • Clinical Physiology of Acid-Base and Electrolyte Disorders, 5th ed., Burton David Rose & Theodore W. Post McGraw-Hill, 2001
  • Lees KR, MacFadyen RJ, Doig JK, Reid JL (August 1993). "Role of angiotensin in the extravascular system". Journal of Human Hypertension. 7 (Suppl 2): S7-12. PMID 8230088.
  • Weir MR, Dzau VJ (December 1999). "The renin-angiotensin-aldosterone system: a specific target for hypertension management". American Journal of Hypertension. 12 (12 Pt 3): 205S–213S. doi:10.1016/S0895-7061(99)00103-X. PMID 10619573.
  • Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG (December 2001). "Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide". American Journal of Physiology. Heart and Circulatory Physiology. 281 (6): H2337-65. doi:10.1152/ajpheart.2001.281.6.H2337. PMID 11709400. S2CID 41296327.
  • Varagic J, Frohlich ED (November 2002). "Local cardiac renin-angiotensin system: hypertension and cardiac failure". Journal of Molecular and Cellular Cardiology. 34 (11): 1435–42. doi:10.1006/jmcc.2002.2075. PMID 12431442.
  • Wolf G (2006). "Role of reactive oxygen species in angiotensin II-mediated renal growth, differentiation, and apoptosis". Antioxidants & Redox Signaling. 7 (9–10): 1337–45. doi:10.1089/ars.2005.7.1337. PMID 16115039.
  • Cazaubon S, Deshayes F, Couraud PO, Nahmias C (April 2006). "[Endothelin-1, angiotensin II and cancer]". Médecine/Sciences. 22 (4): 416–22. doi:10.1051/medsci/2006224416. PMID 16597412.
  • Ariza AC, Bobadilla NA, Halhali A (2007). "[Endothelin 1 and angiotensin II in preeeclampsia]". Revista de Investigacion Clinica. 59 (1): 48–56. PMID 17569300.
  • External links[edit]

    Heart

    Cardiac output

  • Cardiac output
  • Stroke volume
  • Stroke volume
  • Afterload
  • Preload
  • Frank–Starling law
  • Cardiac function curve
  • Venous return curve
  • Wiggers diagram
  • Pressure volume diagram
  • Ultrasound

  • End-systolic dimension) / End-diastolic dimension
  • Aortic valve area calculation
  • Ejection fraction
  • Cardiac index
  • Left atrial volume
  • Heart rate

  • Chronotropic (Heart rate)
  • Dromotropic (Conduction velocity)
  • Inotropic (Contractility)
  • Bathmotropic (Excitability)
  • Lusitropic (Relaxation)
  • Conduction

  • Cardiac electrophysiology
  • Action potential
  • Effective refractory period
  • Pacemaker potential
  • Electrocardiography
  • Hexaxial reference system
  • Chamber pressure

  • Right
  • pulmonary artery
  • Left
  • Aortic
  • Other

    Vascular system/
    hemodynamics

    Blood flow

  • Vascular resistance
  • Pulse
  • Perfusion
  • Blood pressure

  • Diastolic
  • Mean arterial pressure
  • Jugular venous pressure
  • Portal venous pressure
  • Critical closing pressure
  • Regulation of BP

  • Kinin–kallikrein system
  • Renin–angiotensin system
  • Vasoconstrictors
  • Vasodilators
  • Autoregulation
  • Paraganglia
  • Hormones

    see hormones

    Opioid peptides

    Dynorphins

  • Dynorphin B
  • Big dynorphin
  • Leumorphin
  • α-Neoendorphin
  • β-Neoendorphin
  • Endomorphins

  • Endomorphin-2
  • Endorphins

  • β-Endorphin
  • γ-Endorphin
  • Enkephalins

  • Leu-enkephalin
  • Others

  • Amidorphin
  • Hemorphin
  • Nociceptin
  • Opiorphin
  • Spinorphin
  • Valorphin
  • Other
    neuropeptides

    Kinins

    Bradykinins
    Tachykinins: mammal
  • Neurokinin A
  • Neurokinin B
  • amphibian

    Neuromedins

  • N
  • S
  • U
  • Orexins

  • B
  • Other

  • Bombesin
  • Calcitonin gene-related peptide
  • Carnosine
  • Cocaine- and amphetamine-regulated transcript
  • Delta-sleep-inducing peptide
  • FMRFamide
  • Galanin
  • Galanin-like peptide
  • Gastrin-releasing peptide
  • Ghrelin
  • Neuropeptide AF
  • Neuropeptide FF
  • Neuropeptide SF
  • Neuropeptide VF
  • Neuropeptide S
  • Neuropeptide Y
  • Neurophysins
  • Neurotensin
  • Pancreatic polypeptide
  • Pituitary adenylate cyclase-activating peptide
  • RVD-Hpα
  • VGF
  • Kinins

  • Bradykinin
  • Kallidin
  • Tachykinins
  • Urotensin-II
  • Others

  • Eicosanoid
  • Histamine
  • Platelet-activating factor
  • Serotonin
  • ATRTooltip Angiotensin receptor

  • Angiotensin III
  • Angiotensin IV
  • L-163,491
  • Saralasin
  • Combinations:

  • Olmesartan/amlodipine
  • Olmesartan/amlodipine/hydrochlorothiazide
  • Valsartan/hydrochlorothiazide
  • Valsartan/hydrochlorothiazide/amlodipine
  • Japan

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Angiotensin&oldid=1221818621#Angiotensin_II"

    Categories: 
    Human genes
    Genes on human chromosome 1
    Peptide hormones
    Angiology
    Endocrinology
    Hypertension
    Hexapeptides
    Decapeptides
    Hidden categories: 
    CS1 maint: location missing publisher
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from March 2020
    All articles needing additional references
    Wikipedia articles needing clarification from February 2024
    Commons category link is on Wikidata
    Webarchive template wayback links
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NDL identifiers
     



    This page was last edited on 2 May 2024, at 04:35 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki