Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 See also  





2 References  














Angular spectrum method






Français
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The angular spectrum method is a technique for modeling the propagation of a wave field. This technique involves expanding a complex wave field into a summation of infinite number of plane waves of the same frequency and different directions. Its mathematical origins lie in the field of Fourier optics[1][2][3] but it has been applied extensively in the field of ultrasound. The technique can predict an acoustic pressure field distribution over a plane, based upon knowledge of the pressure field distribution at a parallel plane. Predictions in both the forward and backward propagation directions are possible.[4]

Modeling the diffraction of a CW (continuous wave), monochromatic (single frequency) field involves the following steps:

  1. Sampling the complex (real and imaginary) components of a pressure field over a grid of points lying in a cross-sectional plane within the field.
  2. Taking the 2D-FFT (two dimensional Fourier transform) of the pressure field - this will decompose the field into a 2D "angular spectrum" of component plane waves each traveling in a unique direction.
  3. Multiplying each point in the 2D-FFT by a propagation term which accounts for the phase change that each plane wave will undergo on its journey to the prediction plane.
  4. Taking the 2D-IFFT (two dimensional inverse Fourier transform) of the resulting data set to yield the field over the prediction plane.

In addition to predicting the effects of diffraction,[5][6] the model has been extended to apply to non-monochromatic cases (acoustic pulses) and to include the effects of attenuation, refraction, and dispersion. Several researchers have also extended the model to include the nonlinear effects of finite amplitude acoustic propagation (propagation in cases where sound speed is not constant but is dependent upon the instantaneous acoustic pressure).[7][8][9][10][11]

Backward propagation predictions can be used to analyze the surface vibration patterns of acoustic radiators such as ultrasonic transducers.[12] Forward propagation can be used to predict the influence of inhomogeneous, nonlinear media on acoustic transducer performance.[13]

See also

[edit]

References

[edit]
  1. ^ Digital Picture Processing, 2nd edition 1982, Azriel Rosenfeld, Avinash C. Kak, ISBN 0-12-597302-0, Academic Press, Inc.
  • ^ Linear Systems, Fourier Transforms, and Optics (Wiley Series in Pure and Applied Optics) Jack D. Gaskill
  • ^ Introduction to Fourier Optics, Joseph W. Goodman.
  • ^ Angular Spectrum Approach, Robert J. McGough
  • ^ Waag, R.C.; Campbell, J.A.; Ridder, J.; Mesdag, P.R. (1985). "Cross-Sectional Measurements and Extrapolations of Ultrasonic Fields". IEEE Transactions on Sonics and Ultrasonics. 32 (1). Institute of Electrical and Electronics Engineers (IEEE): 26–35. Bibcode:1985ITSU...32...26W. doi:10.1109/t-su.1985.31566. ISSN 0018-9537.
  • ^ Stepanishen, Peter R.; Benjamin, Kim C. (1982). "Forward and backward projection of acoustic fields using FFT methods". The Journal of the Acoustical Society of America. 71 (4). Acoustical Society of America (ASA): 803–812. Bibcode:1982ASAJ...71..803S. doi:10.1121/1.387606. ISSN 0001-4966.
  • ^ Vecchio, Christopher J.; Lewin, Peter A. (1994). "Finite amplitude acoustic propagation modeling using the extended angular spectrum method". The Journal of the Acoustical Society of America. 95 (5). Acoustical Society of America (ASA): 2399–2408. Bibcode:1994ASAJ...95.2399V. doi:10.1121/1.409849. ISSN 0001-4966.
  • ^ Vecchio, Chris; Lewin, Peter A. (1992). Acoustic propagation modeling using the extended angular spectrum method. 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. doi:10.1109/iembs.1992.5762211. ISBN 0-7803-0785-2.
  • ^ Christopher, P. Ted; Parker, Kevin J. (1991). "New approaches to nonlinear diffractive field propagation". The Journal of the Acoustical Society of America. 90 (1). Acoustical Society of America (ASA): 488–499. Bibcode:1991ASAJ...90..488C. doi:10.1121/1.401274. ISSN 0001-4966. PMID 1880298.
  • ^ Zemp, Roger J.; Tavakkoli, Jahangir; Cobbold, Richard S. C. (2003). "Modeling of nonlinear ultrasound propagation in tissue from array transducers". The Journal of the Acoustical Society of America. 113 (1). Acoustical Society of America (ASA): 139–152. Bibcode:2003ASAJ..113..139Z. doi:10.1121/1.1528926. ISSN 0001-4966. PMID 12558254.
  • ^ Vecchio, Christopher John (1992). Finite Amplitude Acoustic Propagation Modeling Using the Extended Angular Spectrum Method (PhD). Dissertation Abstracts International. Bibcode:1992PhDT........59V.
  • ^ Schafer, Mark E.; Lewin, Peter A. (1989). "Transducer characterization using the angular spectrum method". The Journal of the Acoustical Society of America. 85 (5). Acoustical Society of America (ASA): 2202–2214. Bibcode:1989ASAJ...85.2202S. doi:10.1121/1.397869. ISSN 0001-4966.
  • ^ Vecchio, Christopher J.; Schafer, Mark E.; Lewin, Peter A. (1994). "Prediction of ultrasonic field propagation through layered media using the extended angular spectrum method". Ultrasound in Medicine & Biology. 20 (7). Elsevier BV: 611–622. doi:10.1016/0301-5629(94)90109-0. ISSN 0301-5629. PMID 7810021.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Angular_spectrum_method&oldid=1170419988"

    Categories: 
    Physical optics
    Ultrasound
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 14 August 2023, at 23:43 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki