Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 In influenza viruses  





2 See also  





3 Notes  





4 Further reading  





5 External links  














Antigenic drift






العربية
Català
Deutsch
Español
Français
Galego

עברית
Қазақша
Magyar
Nederlands

Polski
Português
Русский
Slovenčina
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Antigenic drift is a kind of genetic variation in viruses, arising from the accumulation of mutations in the virus genes that code for virus-surface proteins that host antibodies recognize. This results in a new strain of virus particles that is not effectively inhibited by the antibodies that prevented infection by previous strains. This makes it easier for the changed virus to spread throughout a partially immune population. Antigenic drift occurs in both influenza A and influenza B viruses.

(Confusion can arise with two very similar terms, antigenic shift and genetic drift. Antigenic shift is a closely related process; it refers to the more dramatic changes in the virus's surface proteins when the genetic material from two or more viruses mix together. Genetic drift is very different and much more broadly applicable; it refers to the gradual accumulation in any DNA sequence of random mutational changes that do not interfere with the DNA's function and thus that are not seen by natural selection.)

The immune system recognizes viruses when antigens on the surfaces of virus particles bind to immune receptors that are specific for these antigens. These receptors can be antibodies in the bloodstream or similar proteins on the surfaces of immune-system cells. This recognition is quite precise, like a key recognizing a lock. After an infection or after vaccination, the body produces many more of these virus-specific immune receptors, which prevent re-infection by this particular strain of the virus; this is called acquired immunity. However, viral genomes are constantly mutating, producing new forms of these antigens. If one of these new forms of an antigen is sufficiently different from the old antigen, it will no longer bind to the antibodies or immune-cell receptors, allowing the mutant virus to infect people who were immune to the original strain of the virus because of prior infection or vaccination.

In 1940s, Maurice Hilleman discovered antigenic drift, which is the most common way that influenza viruses change.[1][2][3][4] A second type of change is antigenic shift, also discovered by Hilleman,[1][2] where the virus acquires a completely new version of one of its surface-protein genes from a distantly related influenza virus. The rate of antigenic drift is dependent on two characteristics: the duration of the epidemic, and the strength of host immunity. A longer epidemic allows for selection pressure to continue over an extended period of time and stronger host immune responses increase selection pressure for development of novel antigens.[5]

In influenza viruses[edit]

In the influenza virus, the two relevant antigens are the surface proteins, hemagglutinin and neuraminidase.[6] The hemagglutinin is responsible for binding and entry into host epithelial cells while the neuraminidase is involved in the process of new virions budding out of host cells.[7] Sites recognized on the hemagglutinin and neuraminidase proteins by host immune systems are under constant selective pressure. Antigenic drift allows for evasion of these host immune systems by small mutations in the hemagglutinin and neuraminidase genes that make the protein unrecognizable to pre-existing host immunity.[8] Antigenic drift is this continuous process of genetic and antigenic change among flu strains.[9]

In human populations, immune (vaccinated) individuals exert selective pressure for single point mutations in the hemagglutinin gene that increase receptor binding avidity, while naive individuals exert selective pressure for single point mutations that decrease receptor binding avidity.[8] These dynamic selection pressures facilitate the observed rapid evolution in the hemagglutinin gene. Specifically, 18 specific codons in the HA1 domain of the hemagglutinin gene have been identified as undergoing positive selection to change their encoded amino acid.[10] To meet the challenge of antigenic drift, vaccines that confer broad protection against heterovariant strains are needed against seasonal, epidemic and pandemic influenza.[11]

As in all RNA viruses, mutations in influenza occur frequently because the virus' RNA polymerase has no proofreading mechanism, resulting in an error rate between 1×10−3 and 8×10−3 substitutions per site per year during viral genome replication.[9] Mutations in the surface proteins allow the virus to elude some host immunity, and the numbers and locations of these mutations that confer the greatest amount of immune escape has been an important topic of study for over a decade.[12][13][14]

Antigenic drift has been responsible for heavier-than-normal flu seasons in the past, like the outbreak of influenza H3N2 variant A/Fujian/411/2002 in the 2003–2004 flu season. All influenza viruses experience some form of antigenic drift, but it is most pronounced in the influenza A virus.[citation needed]

Antigenic drift should not be confused with antigenic shift, which refers to reassortment of the virus' gene segments. As well, it is different from random genetic drift, which is an important mechanism in population genetics.[citation needed]

See also[edit]

Notes[edit]

  1. ^ a b Oransky, Ivan (2005-05-14). "Maurice R Hilleman". The Lancet. 365 (9472): 1682. doi:10.1016/S0140-6736(05)66536-1. ISSN 0140-6736. PMID 15912596. S2CID 46630955.
  • ^ a b Kurth, Reinhard (April 2005). "Maurice R. Hilleman (1919–2005)". Nature. 434 (7037): 1083. doi:10.1038/4341083a. ISSN 1476-4687. PMID 15858560.
  • ^ D. J. D. Earn; J. Dushoff; S. A. Levin (2002). "Ecology and Evolution of the Flu". Trends in Ecology and Evolution. 17 (7): 334–340. doi:10.1016/S0169-5347(02)02502-8.
  • ^ A. W. Hampson (2002). "Influenza virus antigens and antigenic drift". In C. W. Potter (ed.). Influenza. Elsevier Science B. V. pp. 49–86. ISBN 978-0-444-82461-5.
  • ^ Boni, T; S. Cobey; P. Beerli; M. Pascual (2006). "Epidemic dynamics and antigenic evolution in a single season of influenza A". Proceedings of the Royal Society B. 273 (1592): 1307–1316. doi:10.1098/rspb.2006.3466. PMC 1560306. PMID 16777717.
  • ^ Bouvier NM, Palese P (Sep 2008). "The biology of influenza viruses". Vaccine. 26 (Suppl 4): D49–53. doi:10.1016/j.vaccine.2008.07.039. PMC 3074182. PMID 19230160.
  • ^ Nelson, M. I.; Holmes, E. C. (March 2007). "The evolution of pandemic influenza". Nature Reviews Genetics. 8 (3): 196–205. doi:10.1038/nrg2053. PMID 17262054. S2CID 221107.
  • ^ a b Hensley, S. E.; Das, S. R.; Bailey, A. L.; Schmidt, L. M.; Hickman, H. D.; Jayaraman, A.; Viswanathan, K.; Raman, R.; Sasisekharan, R.; Bennink, J. R.; Yewdell, J. W. (30 October 2009). "Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift". Science. 326 (5953): 734–736. Bibcode:2009Sci...326..734H. doi:10.1126/science.1178258. PMC 2784927. PMID 19900932.
  • ^ a b Taubenberger, Jeffery K.; Kash, John C. (17 June 2010). "Influenza virus evolution, host adaptation and pandemic formation". Cell Host & Microbe. 7 (6): 440–451. doi:10.1016/j.chom.2010.05.009. PMC 2892379. PMID 20542248.
  • ^ Bush, R. M.; K. Subbarao; N. J. Cox; W. M. Fitch (3 December 1999). "Predicting the evolution of human influenza A". Science. 286 (5446): 1921–1925. doi:10.1126/science.286.5446.1921. PMID 10583948. S2CID 2836600.
  • ^ Carrat F, Flahault A (September 2007). "Influenza vaccine: the challenge of antigenic drift". Vaccine. 25 (39–40): 6852–62. doi:10.1016/j.vaccine.2007.07.027. PMID 17719149.
  • ^ R. M. Bush; W. M. Fitch; C. A. Bender; N. J. Cox (1999). "Positive selection on the H3 hemagglutinin gene of human influenza virus". Molecular Biology and Evolution. 16 (11): 1457–1465. doi:10.1093/oxfordjournals.molbev.a026057. PMID 10555276.
  • ^ W. M. Fitch; R. M. Bush; C. A. Bender; N. J. Cox (1997). "Long term trends in the evolution of H(3) HA1 human influenza type A". Proceedings of the National Academy of Sciences of the United States of America. 94 (15): 7712–7718. Bibcode:1997PNAS...94.7712F. doi:10.1073/pnas.94.15.7712. PMC 33681. PMID 9223253.
  • ^ D. J. Smith; A. S. Lapedes; J. C. de Jong; T. M. Bestebroer; G. F. Rimmelzwaan; A. D. M. E. Osterhaus; R. A. M. Fouchier (2004). "Mapping the antigenic and genetic evolution of influenza virus" (PDF). Science. 305 (5682): 371–376. Bibcode:2004Sci...305..371S. doi:10.1126/science.1097211. PMID 15218094. S2CID 1258353. Archived from the original (PDF) on 2019-03-07.
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Antigenic_drift&oldid=1180922627"

    Categories: 
    Virology
    Influenza
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from August 2022
    Webarchive template wayback links
     



    This page was last edited on 19 October 2023, at 17:50 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki