Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Antisymmetric and symmetric tensors  





2 Notation  





3 Examples  





4 See also  





5 Notes  





6 References  





7 External links  














Antisymmetric tensor






Español
Esperanto
Français

עברית
Nederlands

Português
Русский
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics and theoretical physics, a tensorisantisymmetric on (orwith respect to) an index subset if it alternates sign (+/−) when any two indices of the subset are interchanged.[1][2] The index subset must generally either be all covariant or all contravariant.

For example, holds when the tensor is antisymmetric with respect to its first three indices.

If a tensor changes sign under exchange of each pair of its indices, then the tensor is completely (ortotally) antisymmetric. A completely antisymmetric covariant tensor fieldoforder may be referred to as a differential -form, and a completely antisymmetric contravariant tensor field may be referred to as a -vector field.

Antisymmetric and symmetric tensors[edit]

A tensor A that is antisymmetric on indices and has the property that the contraction with a tensor B that is symmetric on indices and is identically 0.

For a general tensor U with components and a pair of indices and U has symmetric and antisymmetric parts defined as:

  (symmetric part)
  (antisymmetric part).

Similar definitions can be given for other pairs of indices. As the term "part" suggests, a tensor is the sum of its symmetric part and antisymmetric part for a given pair of indices, as in

Notation[edit]

A shorthand notation for anti-symmetrization is denoted by a pair of square brackets. For example, in arbitrary dimensions, for an order 2 covariant tensor M, and for an order 3 covariant tensor T,

In any 2 and 3 dimensions, these can be written as where is the generalized Kronecker delta, and the Einstein summation convention is in use.

More generally, irrespective of the number of dimensions, antisymmetrization over indices may be expressed as

In general, every tensor of rank 2 can be decomposed into a symmetric and anti-symmetric pair as:

This decomposition is not in general true for tensors of rank 3 or more, which have more complex symmetries.

Examples[edit]

Totally antisymmetric tensors include:

See also[edit]

Notes[edit]

  1. ^ K.F. Riley; M.P. Hobson; S.J. Bence (2010). Mathematical methods for physics and engineering. Cambridge University Press. ISBN 978-0-521-86153-3.
  • ^ Juan Ramón Ruíz-Tolosa; Enrique Castillo (2005). From Vectors to Tensors. Springer. p. 225. ISBN 978-3-540-22887-5. section §7.
  • References[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Antisymmetric_tensor&oldid=1232159320"

    Category: 
    Tensors
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Pages displaying short descriptions of redirect targets via Module:Annotated link
    Pages displaying wikidata descriptions as a fallback via Module:Annotated link
     



    This page was last edited on 2 July 2024, at 08:04 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki