Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Existence of κ-Aronszajn trees  





2 Special Aronszajn trees  





3 Construction of a special Aronszajn tree  





4 See also  





5 References  





6 External links  














Aronszajn tree






Français
עברית

Português
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inset theory, an Aronszajn tree is a tree of uncountable height with no uncountable branches and no uncountable levels. For example, every Suslin tree is an Aronszajn tree. More generally, for a cardinal κ, a κ-Aronszajn tree is a tree of height κ in which all levels have size less than κ and all branches have height less than κ (so Aronszajn trees are the same as -Aronszajn trees). They are named for Nachman Aronszajn, who constructed an Aronszajn tree in 1934; his construction was described by Kurepa (1935).

A cardinal κ for which no κ-Aronszajn trees exist is said to have the tree property (sometimes the condition that κ is regular and uncountable is included).

Existence of κ-Aronszajn trees

[edit]

Kőnig's lemma states that -Aronszajn trees do not exist.

The existence of Aronszajn trees (-Aronszajn trees) was proven by Nachman Aronszajn, and implies that the analogue of Kőnig's lemma does not hold for uncountable trees.

The existence of -Aronszajn trees is undecidable in ZFC: more precisely, the continuum hypothesis implies the existence of an -Aronszajn tree, and Mitchell and Silver showed that it is consistent (relative to the existence of a weakly compact cardinal) that no -Aronszajn trees exist.

Jensen proved that V = L implies that there is a κ-Aronszajn tree (in fact a κ-Suslin tree) for every infinite successor cardinal κ.

Cummings & Foreman (1998) showed (using a large cardinal axiom) that it is consistent that no -Aronszajn trees exist for any finite n other than 1.

Ifκ is weakly compact then no κ-Aronszajn trees exist. Conversely, if κisinaccessible and no κ-Aronszajn trees exist, then κ is weakly compact.

Special Aronszajn trees

[edit]

An Aronszajn tree is called special if there is a function f from the tree to the rationals so that f(x) < f(y) whenever x < y. Martin's axiom MA() implies that all Aronszajn trees are special, a proposition sometimes abbreviated by EATS. The stronger proper forcing axiom implies the stronger statement that for any two Aronszajn trees there is a club set of levels such that the restrictions of the trees to this set of levels are isomorphic, which says that in some sense any two Aronszajn trees are essentially isomorphic (Abraham & Shelah 1985). On the other hand, it is consistent that non-special Aronszajn trees exist, and this is also consistent with the generalized continuum hypothesis plus Suslin's hypothesis (Schlindwein 1994).

Construction of a special Aronszajn tree

[edit]

A special Aronszajn tree can be constructed as follows.

The elements of the tree are certain well-ordered sets of rational numbers with supremum that is rational or −∞. If x and y are two of these sets then we define x ≤ y (in the tree order) to mean that x is an initial segment of the ordered set y. For each countable ordinal α we write Uα for the elements of the tree of level α, so that the elements of Uα are certain sets of rationals with order type α. The special Aronszajn tree T is the union of the sets Uα for all countable α.

We construct the countable levels Uα by transfinite induction on α as follows starting with the empty set as U0:

The function f(x) = sup x is rational or −∞, and has the property that if x < y then f(x) < f(y). Any branch in T is countable as f maps branches injectively to −∞ and the rationals. T is uncountable as it has a non-empty level Uα for each countable ordinal α which make up the first uncountable ordinal. This proves that T is a special Aronszajn tree.

This construction can be used to construct κ-Aronszajn trees whenever κ is a successor of a regular cardinal and the generalized continuum hypothesis holds, by replacing the rational numbers by a more general η set.

See also

[edit]

References

[edit]
[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Aronszajn_tree&oldid=1106564428"

Categories: 
Trees (set theory)
Independence results
 



This page was last edited on 25 August 2022, at 07:09 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki