Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition and overview  





2 CatalanDickson conjecture  





3 Systematically searching for aliquot sequences  





4 See also  





5 Notes  





6 References  





7 External links  














Aliquot sequence






العربية
Dansk
Deutsch
Español
Français
עברית
Magyar
Nederlands

Română
Русский
Slovenščina
ி

 

Edit links
 









Article
Talk
 

















Read
View source
View history
 








Tools
   


Actions  



Read
View source
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 





Page semi-protected

From Wikipedia, the free encyclopedia
 

(Redirected from Aspiring number)

Unsolved problem in mathematics:

Do all aliquot sequences eventually end with a prime number, a perfect number, or a set of amicable or sociable numbers? (Catalan's aliquot sequence conjecture)

Inmathematics, an aliquot sequence is a sequence of positive integers in which each term is the sum of the proper divisors of the previous term. If the sequence reaches the number 1, it ends, since the sum of the proper divisors of 1 is 0.

Definition and overview

The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ1 or the aliquot sum function s in the following way:[1] If the sn-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these sequences are usually 0 or 6.

For example, the aliquot sequence of 10 is 10, 8, 7, 1, 0 because:

Many aliquot sequences terminate at zero; all such sequences necessarily end with a prime number followed by 1 (since the only proper divisor of a prime is 1), followed by 0 (since 1 has no proper divisors). See (sequence A080907 in the OEIS) for a list of such numbers up to 75. There are a variety of ways in which an aliquot sequence might not terminate:

Aliquot sequences from 0 to 47
n Aliquot sequence of n Length (OEISA098007)
0 0 1
1 1, 0 2
2 2, 1, 0 3
3 3, 1, 0 3
4 4, 3, 1, 0 4
5 5, 1, 0 3
6 6 1
7 7, 1, 0 3
8 8, 7, 1, 0 4
9 9, 4, 3, 1, 0 5
10 10, 8, 7, 1, 0 5
11 11, 1, 0 3
12 12, 16, 15, 9, 4, 3, 1, 0 8
13 13, 1, 0 3
14 14, 10, 8, 7, 1, 0 6
15 15, 9, 4, 3, 1, 0 6
16 16, 15, 9, 4, 3, 1, 0 7
17 17, 1, 0 3
18 18, 21, 11, 1, 0 5
19 19, 1, 0 3
20 20, 22, 14, 10, 8, 7, 1, 0 8
21 21, 11, 1, 0 4
22 22, 14, 10, 8, 7, 1, 0 7
23 23, 1, 0 3
24 24, 36, 55, 17, 1, 0 6
25 25, 6 2
26 26, 16, 15, 9, 4, 3, 1, 0 8
27 27, 13, 1, 0 4
28 28 1
29 29, 1, 0 3
30 30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1, 0 16
31 31, 1, 0 3
32 32, 31, 1, 0 4
33 33, 15, 9, 4, 3, 1, 0 7
34 34, 20, 22, 14, 10, 8, 7, 1, 0 9
35 35, 13, 1, 0 4
36 36, 55, 17, 1, 0 5
37 37, 1, 0 3
38 38, 22, 14, 10, 8, 7, 1, 0 8
39 39, 17, 1, 0 4
40 40, 50, 43, 1, 0 5
41 41, 1, 0 3
42 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1, 0 15
43 43, 1, 0 3
44 44, 40, 50, 43, 1, 0 6
45 45, 33, 15, 9, 4, 3, 1, 0 8
46 46, 26, 16, 15, 9, 4, 3, 1, 0 9
47 47, 1, 0 3

The lengths of the aliquot sequences that start at n are

1, 2, 2, 3, 2, 1, 2, 3, 4, 4, 2, 7, 2, 5, 5, 6, 2, 4, 2, 7, 3, 6, 2, 5, 1, 7, 3, 1, 2, 15, 2, 3, 6, 8, 3, 4, 2, 7, 3, 4, 2, 14, 2, 5, 7, 8, 2, 6, 4, 3, ... (sequence A044050 in the OEIS)

The final terms (excluding 1) of the aliquot sequences that start at n are

1, 2, 3, 3, 5, 6, 7, 7, 3, 7, 11, 3, 13, 7, 3, 3, 17, 11, 19, 7, 11, 7, 23, 17, 6, 3, 13, 28, 29, 3, 31, 31, 3, 7, 13, 17, 37, 7, 17, 43, 41, 3, 43, 43, 3, 3, 47, 41, 7, 43, ... (sequence A115350 in the OEIS)

Numbers whose aliquot sequence terminates in 1 are

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, ... (sequence A080907 in the OEIS)

Numbers whose aliquot sequence known to terminate in a perfect number, other than perfect numbers themselves (6, 28, 496, ...), are

25, 95, 119, 143, 417, 445, 565, 608, 650, 652, 675, 685, 783, 790, 909, 913, ... (sequence A063769 in the OEIS)

Numbers whose aliquot sequence terminates in a cycle with length at least 2 are

220, 284, 562, 1064, 1184, 1188, 1210, 1308, 1336, 1380, 1420, 1490, 1604, 1690, 1692, 1772, 1816, 1898, 2008, 2122, 2152, 2172, 2362, ... (sequence A121507 in the OEIS)

Numbers whose aliquot sequence is not known to be finite or eventually periodic are

276, 306, 396, 552, 564, 660, 696, 780, 828, 888, 966, 996, 1074, 1086, 1098, 1104, 1134, 1218, 1302, 1314, 1320, 1338, 1350, 1356, 1392, 1398, 1410, 1464, 1476, 1488, ... (sequence A131884 in the OEIS)

A number that is never the successor in an aliquot sequence is called an untouchable number.

2, 5, 52, 88, 96, 120, 124, 146, 162, 188, 206, 210, 216, 238, 246, 248, 262, 268, 276, 288, 290, 292, 304, 306, 322, 324, 326, 336, 342, 372, 406, 408, 426, 430, 448, 472, 474, 498, ... (sequence A005114 in the OEIS)

Catalan–Dickson conjecture

An important conjecture due to Catalan, sometimes called the Catalan–Dickson conjecture, is that every aliquot sequence ends in one of the above ways: with a prime number, a perfect number, or a set of amicable or sociable numbers.[3] The alternative would be that a number exists whose aliquot sequence is infinite yet never repeats. Any one of the many numbers whose aliquot sequences have not been fully determined might be such a number. The first five candidate numbers are often called the Lehmer five (named after D.H. Lehmer): 276, 552, 564, 660, and 966.[4] However, it is worth noting that 276 may reach a high apex in its aliquot sequence and then descend; the number 138 reaches a peak of 179931895322 before returning to 1.

Guy and Selfridge believe the Catalan–Dickson conjecture is false (so they conjecture some aliquot sequences are unbounded above (i.e., diverge)).[5]

Systematically searching for aliquot sequences

The aliquot sequence can be represented as a directed graph, , for a given integer , where denotes the sum of the proper divisors of .[6] Cyclesin represent sociable numbers within the interval . Two special cases are loops that represent perfect numbers and cycles of length two that represent amicable pairs.

See also

Notes

  1. ^ Weisstein, Eric W. "Aliquot Sequence". MathWorld.
  • ^ Sloane, N. J. A. (ed.). "Sequence A063769 (Aspiring numbers: numbers whose aliquot sequence terminates in a perfect number.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Weisstein, Eric W. "Catalan's Aliquot Sequence Conjecture". MathWorld.
  • ^ Creyaufmüller, Wolfgang (May 24, 2014). "Lehmer Five". Retrieved June 14, 2015.
  • ^ A. S. Mosunov, What do we know about aliquot sequences?
  • ^ Rocha, Rodrigo Caetano; Thatte, Bhalchandra (2015), Distributed cycle detection in large-scale sparse graphs, Simpósio Brasileiro de Pesquisa Operacional (SBPO), doi:10.13140/RG.2.1.1233.8640
  • References

  • W. Creyaufmüller. Primzahlfamilien - Das Catalan'sche Problem und die Familien der Primzahlen im Bereich 1 bis 3000 im Detail. Stuttgart 2000 (3rd ed.), 327p.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Aliquot_sequence&oldid=1225561391"

    Categories: 
    Arithmetic functions
    Divisor function
    Arithmetic dynamics
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Wikipedia pages semi-protected from banned users
    Articles with French-language sources (fr)
     



    This page was last edited on 25 May 2024, at 07:16 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki