Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 In mathematics  



1.1  Factorization properties  





1.2  Factorial properties  





1.3  Figurate properties  





1.4  Enumerative properties  







2 In other areas  





3 References  














288 (number)






العربية
Azərbaycanca
 / Bân-lâm-gú
Čeština
Emiliàn e rumagnòl
Euskara

Italiano
Kiswahili
Kreyòl ayisyen
Magyar
Македонски
مازِرونی
Bahasa Melayu
 
 / Mìng-dĕ̤ng-nḡ

Oʻzbekcha / ўзбекча
Sesotho sa Leboa
کوردی
Svenska
Татарча / tatarça
اردو
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


← 287 288 289 →

200 210 220 230 240 250 260 270 280 290

  • Integers
  • 0 100 200 300 400 500 600 700 800 900

    Cardinaltwo hundred eighty-eight
    Ordinal288th
    (two hundred eighty-eighth)
    Factorization25 × 32
    Greek numeralΣΠΗ´
    Roman numeralCCLXXXVIII
    Binary1001000002
    Ternary1012003
    Senary12006
    Octal4408
    Duodecimal20012
    Hexadecimal12016

    288 (two hundred [and] eighty-eight) is the natural number following 287 and preceding 289. Because 288 = 2 · 12 · 12, it may also be called "two gross" or "two dozen dozen".

    In mathematics

    [edit]

    Factorization properties

    [edit]

    Because its prime factorization contains only the first two prime numbers 2 and 3, 288 is a 3-smooth number.[1] This factorization also makes it a highly powerful number, a number with a record-setting value of the product of the exponents in its factorization.[2][3] Among the highly abundant numbers, numbers with record-setting sums of divisors, it is one of only 13 such numbers with an odd divisor sum.[4]

    Both 288 and 289 = 172 are powerful numbers, numbers in which all exponents of the prime factorization are larger than one.[5][6][7] This property is closely connected to being highly abundant with an odd divisor sum: all sufficiently large highly abundant numbers have an odd prime factor with exponent one, causing their divisor sum to be even.[4][8] 288 and 289 form only the second consecutive pair of powerful numbers after 8 and 9.[5][6][7]

    Factorial properties

    [edit]

    288 is a superfactorial, a product of consecutive factorials, since[5][9][10] Coincidentally, as well as being a product of descending powers, 288 is a sum of ascending powers:[11]

    288 appears prominently in Stirling's approximation for the factorial, as the denominator of the second term of the Stirling series[12]

    Figurate properties

    [edit]

    288 is connected to the figurate numbers in multiple ways. It is a pentagonal pyramidal number[13][14] and a dodecagonal number.[14][15] Additionally, it is the index, in the sequence of triangular numbers, of the fifth square triangular number:[14][16]

    Enumerative properties

    [edit]

    There are 288 different ways of completely filling in a sudoku puzzle grid.[17][18] For square grids whose side length is the square of a prime number, such as 4 or 9, a completed sudoku puzzle is the same thing as a "pluperfect Latin square", an array in which every dissection into rectangles of equal width and height to each other has one copy of each digit in each rectangle. Therefore, there are also 288 pluperfect Latin squares of order 4.[19] There are 288 different invertible matrices modulo six,[20] and 288 different ways of placing two chess queens on a board with toroidal boundary conditions so that they do not attack each other.[21] There are 288 independent sets in a 5-dimensional hypercube, up to symmetries of the hypercube.[22]

    In other areas

    [edit]

    In early 20th-century molecular biology, some mysticism surrounded the use of 288 to count protein structures, largely based on the fact that it is a smooth number.[23][24]

    A common mathematical pun involves the fact that 288 = 2 · 144, and that 144 is named as a gross: "Q: Why should the number 288 never be mentioned? A: it is two gross."[25]

    References

    [edit]
    1. ^ Sloane, N. J. A. (ed.). "Sequence A003586 (3-smooth numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Sloane, N. J. A. (ed.). "Sequence A005934 (Highly powerful numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Hardy, G. E.; Subbarao, M. V. (1983). "Highly powerful numbers" (PDF). Congressus Numerantium. 37: 277–307. MR 0703589.
  • ^ a b Sloane, N. J. A. (ed.). "Sequence A128700 (Highly abundant numbers with an odd divisor sum)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ a b c Wells, David (1997). The Penguin Dictionary of Curious and Interesting Numbers. Penguin. p. 137. ISBN 9780140261493.
  • ^ a b Sloane, N. J. A. (ed.). "Sequence A060355 (Numbers n such that n and n+1 are a pair of consecutive powerful numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ a b De Koninck, Jean-Marie (2009). Those fascinating numbers. Providence, Rhode Island: American Mathematical Society. p. 69. doi:10.1090/mbk/064. ISBN 978-0-8218-4807-4. MR 2532459.
  • ^ Alaoglu, L.; Erdős, P. (1944). "On highly composite and similar numbers" (PDF). Transactions of the American Mathematical Society. 56 (3): 448–469. doi:10.2307/1990319. JSTOR 1990319. MR 0011087.
  • ^ Sloane, N. J. A. (ed.). "Sequence A000178 (Superfactorials)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Kozen, Dexter; Silva, Alexandra (2013). "On Moessner's theorem". The American Mathematical Monthly. 120 (2): 131–139. doi:10.4169/amer.math.monthly.120.02.131. hdl:2066/111198. JSTOR 10.4169/amer.math.monthly.120.02.131. MR 3029938. S2CID 8799795.
  • ^ Sloane, N. J. A. (ed.). "Sequence A001923". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Sloane, N. J. A. (ed.). "Sequence A001164 (Stirling's formula: denominators of asymptotic series for Gamma function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Sloane, N. J. A. (ed.). "Sequence A002411 (Pentagonal pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ a b c Deza, Elena; Deza, Michel (2012). Figurate Numbers. World Scientific. pp. 3, 23, 211. ISBN 9789814355483.
  • ^ Sloane, N. J. A. (ed.). "Sequence A051624 (12-gonal (or dodecagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Sloane, N. J. A. (ed.). "Sequence A001108 (a(n)-th triangular number is a square)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Sloane, N. J. A. (ed.). "Sequence A107739 (Number of (completed) sudokus (or Sudokus) of size n^2 X n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Taalman, Laura (September 2007). "Taking Sudoku seriously". Math Horizons. 15 (1): 5–9. doi:10.1080/10724117.2007.11974720. JSTOR 25678701. S2CID 126371771.
  • ^ Sloane, N. J. A. (ed.). "Sequence A108395 (Number of pluperfect Latin squares of order n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Sloane, N. J. A. (ed.). "Sequence A000252 (Number of invertible 2 X 2 matrices mod n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Sloane, N. J. A. (ed.). "Sequence A172517 (Number of ways to place 2 nonattacking queens on an n X n toroidal board)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Sloane, N. J. A. (ed.). "Sequence A060631 (Number of independent sets in an n-dimensional hypercube modulo symmetries of the hypercube)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Potter, Robert D. (February 12, 1938). "Building blocks of life ruled by the number 288: This number and its multiples found everywhere in groupings of amino acids to form proteins". The Science News-Letter. 33 (7): 99–100. doi:10.2307/3914385. JSTOR 3914385.
  • ^ Klotz, Irving M. (October 1993). "Biogenesis: number mysticism in protein thinking". The FASEB Journal. 7 (13): 1219–1225. doi:10.1096/fasebj.7.13.8405807. PMID 8405807. S2CID 13276657.
  • ^ Nowlan, Robert A. (2017). "Logical Nonsense". Masters of Mathematics: The Problems They Solved, Why These Are Important, and What You Should Know about Them. Sense Publishers. pp. 263–268. doi:10.1007/978-94-6300-893-8_17. ISBN 978-94-6300-893-8. See p. 284.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=288_(number)&oldid=1214363477"

    Category: 
    Integers
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 18 March 2024, at 14:18 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki