Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Measuring coherence  



1.1  Measurement methods  







2 Examples  



2.1  Atomic interferometry  





2.2  Rabi flopping  







3 See also  





4 References  














Atomic coherence






فارسی
Türkçe
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Atomic coherence is the induced coherence between levels of a multi-level atomic system.

The internal state of an atom is characterized by a superposition of excited states and their associated energy levels. In the presence of external electromagnetic fields, the atom's energy levels acquire perturbations to the excited states that describe the atom's internal state. When the acquired phase is the same over the range of internal states, the atom is coherent. Atomic coherence is characterized by the length of time over which the internal state of the atom can be reliably manipulated.[1]

Measuring coherence[edit]

The primary way by which atomic coherence is quantified is using the coherence time.

Measurement methods[edit]

Examples[edit]

Atomic interferometry[edit]

Anatom interferometer creates coherent atomic beams, where the coherence is with respect to the phase of the atom's de Broglie wave.[4]

Rabi flopping[edit]

If an electron in a two level atomic system is excited by narrow line width coherent electro-magnetic radiation, like a laser, that is on resonance with the two level transition, the electron will Rabi flop. During Rabi flopping the electron oscillates between the ground and excited states and can be described by a continuous rotation around the Bloch sphere.

For a perfectly isolated system the Rabi oscillation will continue indefinitely and will undergo no phase change, making it a "coherent state".[5] In physical systems interactions between the system and the environment introduce an unknown phase in the Rabi oscillation between the two levels with respect to the Rabi oscillation in the perfectly isolated system causing "decoherence".

Rabi flopping between the S1/2 and D5/2 energy states in 88Sr+. This example shows high fidelity Rabi flopping on the clock transition with little decoherence.
Rabi flopping between the S1/2 and D5/2 energy states in 88Sr+. This example shows high fidelity Rabi flopping on the clock transition with little decoherence.

If instead of a single two-level system an ensemble of identical two level systems (such as a chain of identical atoms in an ion trap) is prepared and continuously addressed with a laser, all the atoms may begin to simultaneously Rabi flop.[citation needed] At the beginning all two level systems will have a defined relative phase relation (they will all be in phase) and the system will be coherent.

As atoms begin to undergo random spontaneous emission their Rabi oscillations will accumulate a random relative phase with respect to each other and become decoherent. In actual experiments ambient magnetic field noise and thermal heating from collisions between atoms cause decoherence faster than random spontaneous emission and are the dominant uncertainties when running atomic clocksortrapped ion quantum computers.[6] Atomic coherence can also apply to multi-level systems which require more than a single laser.

Atomic coherence is essential in research on several effects, such as electromagnetically induced transparency (EIT), lasing without inversion (LWI), stimulated raman adiabatic passage (STIRAP) and nonlinear optical interaction with enhanced efficiency.

Atomic systems demonstrating continuous superradiance exhibit long coherence time, a property shared with lasers.[7]

See also[edit]

  • t
  • e
  • References[edit]

    1. ^ Wineland, D.J.; Monroe, C.; Itano, W.M.; Leibfried, D.; King, B.E.; Meekhof, D.M. (May 1998). "Experimental issues in coherent quantum-state manipulation of trapped atomic ions". Journal of Research of the National Institute of Standards and Technology. 103 (3): 259. doi:10.6028/jres.103.019.
  • ^ Wang, Pengfei; Luan, Chun-Yang; Qiao, Mu; Um, Mark; Zhang, Junhua; Wang, Ye; Yuan, Xiao; Gu, Mile; Zhang, Jingning; Kim, Kihwan (2021-01-11). "Single ion qubit with estimated coherence time exceeding one hour". Nature Communications. 12 (1): 233. doi:10.1038/s41467-020-20330-w. ISSN 2041-1723. PMC 7801401. PMID 33431845.
  • ^ de Léséleuc, Sylvain; Barredo, Daniel; Lienhard, Vincent; Browaeys, Antoine; Lahaye, Thierry (2018-05-03). "Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states". Physical Review A. 97 (5): 053803. arXiv:1802.10424. Bibcode:2018PhRvA..97e3803D. doi:10.1103/PhysRevA.97.053803. S2CID 52263728.
  • ^ Cronin, Alexander D.; Schmiedmayer, Jörg; Pritchard, David E. (2009-07-28). "Optics and interferometry with atoms and molecules". Reviews of Modern Physics. 81 (3): 1051–1129. arXiv:0712.3703. Bibcode:2009RvMP...81.1051C. doi:10.1103/RevModPhys.81.1051. hdl:1721.1/52372. ISSN 0034-6861. S2CID 28009912.
  • ^ Foot, C. J. (2005). Atomic Physics. Oxford University Press. pp. 127–128. ISBN 978-0-19-850695-9.
  • ^ Bruzewics, Colin (2019). "Trapped-ion quantum computing: Progress and challenges". pubs.aip.org. Retrieved 2023-11-07.
  • ^ Meiser, D.; Holland, M. J. (2010-03-29). "Steady-state superradiance with alkaline-earth-metal atoms". Physical Review A. 81 (3). American Physical Society (APS): 033847. arXiv:0912.0690. Bibcode:2010PhRvA..81c3847M. doi:10.1103/physreva.81.033847. ISSN 1050-2947. S2CID 118417496.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Atomic_coherence&oldid=1198378046"

    Categories: 
    Atomic, molecular, and optical physics
    Photonics
    Atomic, molecular, and optical physics stubs
    Hidden categories: 
    Articles needing additional references from February 2020
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from November 2023
    All stub articles
     



    This page was last edited on 23 January 2024, at 23:56 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki