Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  





2 In category theory  





3 Automorphism group functor  





4 See also  





5 Notes  





6 Citations  





7 References  





8 External links  














Automorphism group






Bahasa Indonesia
Română
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, the automorphism group of an object X is the group consisting of automorphismsofX under compositionofmorphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself (the general linear groupofX). If instead X is a group, then its automorphism group is the group consisting of all group automorphismsofX.

Especially in geometric contexts, an automorphism group is also called a symmetry group. A subgroup of an automorphism group is sometimes called a transformation group.

Automorphism groups are studied in a general way in the field of category theory.

Examples

[edit]

IfX is a set with no additional structure, then any bijection from X to itself is an automorphism, and hence the automorphism group of X in this case is precisely the symmetric groupofX. If the set X has additional structure, then it may be the case that not all bijections on the set preserve this structure, in which case the automorphism group will be a subgroup of the symmetric group on X. Some examples of this include the following:

IfG is a group acting on a set X, the action amounts to a group homomorphism from G to the automorphism group of X and conversely. Indeed, each left G-action on a set X determines , and, conversely, each homomorphism defines an action by . This extends to the case when the set X has more structure than just a set. For example, if X is a vector space, then a group action of GonX is a group representation of the group G, representing G as a group of linear transformations (automorphisms) of X; these representations are the main object of study in the field of representation theory.

Here are some other facts about automorphism groups:

In category theory

[edit]

Automorphism groups appear very naturally in category theory.

IfX is an object in a category, then the automorphism group of X is the group consisting of all the invertible morphisms from X to itself. It is the unit group of the endomorphism monoidofX. (For some examples, see PROP.)

If are objects in some category, then the set of all is a left -torsor. In practical terms, this says that a different choice of a base point of differs unambiguously by an element of , or that each choice of a base point is precisely a choice of a trivialization of the torsor.

If and are objects in categories and , and if is a functor mapping to, then induces a group homomorphism , as it maps invertible morphisms to invertible morphisms.

In particular, if G is a group viewed as a category with a single object * or, more generally, if G is a groupoid, then each functor , C a category, is called an action or a representation of G on the object , or the objects . Those objects are then said to be -objects (as they are acted by ); cf. -object. If is a module category like the category of finite-dimensional vector spaces, then -objects are also called -modules.

Automorphism group functor

[edit]

Let be a finite-dimensional vector space over a field k that is equipped with some algebraic structure (that is, M is a finite-dimensional algebra over k). It can be, for example, an associative algebra or a Lie algebra.

Now, consider k-linear maps that preserve the algebraic structure: they form a vector subspace of. The unit group of is the automorphism group . When a basis on M is chosen, is the space of square matrices and is the zero set of some polynomial equations, and the invertibility is again described by polynomials. Hence, is a linear algebraic group over k.

Now base extensions applied to the above discussion determines a functor:[6] namely, for each commutative ring R over k, consider the R-linear maps preserving the algebraic structure: denote it by . Then the unit group of the matrix ring over R is the automorphism group and is a group functor: a functor from the category of commutative rings over k to the category of groups. Even better, it is represented by a scheme (since the automorphism groups are defined by polynomials): this scheme is called the automorphism group scheme and is denoted by .

In general, however, an automorphism group functor may not be represented by a scheme.

See also

[edit]

Notes

[edit]
  1. ^ First, if G is simply connected, the automorphism group of G is that of . Second, every connected Lie group is of the form where is a simply connected Lie group and C is a central subgroup and the automorphism group of G is the automorphism group of that preserves C. Third, by convention, a Lie group is second countable and has at most coutably many connected components; thus, the general case reduces to the connected case.

Citations

[edit]
  1. ^ Hartshorne 1977, Ch. II, Example 7.1.1.
  • ^ Dummit & Foote 2004, § 2.3. Exercise 26.
  • ^ Hochschild, G. (1952). "The Automorphism Group of a Lie Group". Transactions of the American Mathematical Society. 72 (2): 209–216. JSTOR 1990752.
  • ^ Fulton & Harris 1991, Exercise 8.28.
  • ^ Milnor 1971, Lemma 3.2.
  • ^ Waterhouse 2012, § 7.6.
  • References

    [edit]
  • Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103.
  • Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157
  • Milnor, John Willard (1971). Introduction to algebraic K-theory. Annals of Mathematics Studies. Vol. 72. Princeton, NJ: Princeton University Press. ISBN 9780691081014. MR 0349811. Zbl 0237.18005.
  • Waterhouse, William C. (2012) [1979]. Introduction to Affine Group Schemes. Graduate Texts in Mathematics. Vol. 66. Springer Verlag. ISBN 9781461262176.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Automorphism_group&oldid=1154908936"

    Category: 
    Group automorphisms
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 15 May 2023, at 12:56 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki