Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Time-domain condition for linear time-invariant systems  



1.1  Continuous-time necessary and sufficient condition  





1.2  Discrete-time sufficient condition  



1.2.1  Proof of sufficiency  









2 Frequency-domain condition for linear time-invariant systems  



2.1  Continuous-time signals  





2.2  Discrete-time signals  







3 See also  





4 Further reading  





5 References  














BIBO stability






Català
Deutsch
فارسی
Français
Italiano
עברית

Polski

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Insignal processing, specifically control theory, bounded-input, bounded-output (BIBO) stability is a form of stability for signals and systems that take inputs. If a system is BIBO stable, then the output will be bounded for every input to the system that is bounded.

A signal is bounded if there is a finite value such that the signal magnitude never exceeds , that is

For discrete-time signals:
For continuous-time signals:

Time-domain condition for linear time-invariant systems[edit]

Continuous-time necessary and sufficient condition[edit]

For a continuous time linear time-invariant (LTI) system, the condition for BIBO stability is that the impulse response, , be absolutely integrable, i.e., its L1 norm exists.

Discrete-time sufficient condition[edit]

For a discrete time LTI system, the condition for BIBO stability is that the impulse responsebeabsolutely summable, i.e., its norm exists.

Proof of sufficiency[edit]

Given a discrete time LTI system with impulse response the relationship between the input and the output is

where denotes convolution. Then it follows by the definition of convolution

Let be the maximum value of , i.e., the -norm.

(by the triangle inequality)

If is absolutely summable, then and

So if is absolutely summable and is bounded, then is bounded as well because .

The proof for continuous-time follows the same arguments.

Frequency-domain condition for linear time-invariant systems[edit]

Continuous-time signals[edit]

For a rational and continuous-time system, the condition for stability is that the region of convergence (ROC) of the Laplace transform includes the imaginary axis. When the system is causal, the ROC is the open region to the right of a vertical line whose abscissa is the real part of the "largest pole", or the pole that has the greatest real part of any pole in the system. The real part of the largest pole defining the ROC is called the abscissa of convergence. Therefore, all poles of the system must be in the strict left half of the s-plane for BIBO stability.

This stability condition can be derived from the above time-domain condition as follows:

where and

The region of convergence must therefore include the imaginary axis.

Discrete-time signals[edit]

For a rational and discrete time system, the condition for stability is that the region of convergence (ROC) of the z-transform includes the unit circle. When the system is causal, the ROC is the open region outside a circle whose radius is the magnitude of the pole with largest magnitude. Therefore, all poles of the system must be inside the unit circle in the z-plane for BIBO stability.

This stability condition can be derived in a similar fashion to the continuous-time derivation:

where and .

The region of convergence must therefore include the unit circle.

See also[edit]

Further reading[edit]

  • Gordon E. Carlson Signal and Linear Systems Analysis with Matlab second edition, Wiley, 1998, ISBN 0-471-12465-6
  • John G. Proakis and Dimitris G. Manolakis Digital Signal Processing Principals, Algorithms and Applications third edition, Prentice Hall, 1996, ISBN 0-13-373762-4
  • D. Ronald Fannin, William H. Tranter, and Rodger E. Ziemer Signals & Systems Continuous and Discrete fourth edition, Prentice Hall, 1998, ISBN 0-13-496456-X
  • Proof of the necessary conditions for BIBO stability.
  • Christophe Basso Designing Control Loops for Linear and Switching Power Supplies: A Tutorial Guide first edition, Artech House, 2012, 978-1608075577
  • Michael Unser (2020). "A Note on BIBO Stability". IEEE Transactions on Signal Processing. 68: 5904–5913. arXiv:2005.14428. Bibcode:2020ITSP...68.5904U. doi:10.1109/TSP.2020.3025029.
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=BIBO_stability&oldid=1224571567"

    Categories: 
    Signal processing
    Digital signal processing
    Stability theory
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles lacking in-text citations from April 2009
    All articles lacking in-text citations
    Articles containing proofs
     



    This page was last edited on 19 May 2024, at 04:32 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki