Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 

















BQM-147 Dragon






Bahasa Indonesia
Тоҷикӣ
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 



BQM-147 Dragon
Role Reconnaissance drone
National origin United States
Manufacturer BAI Aerosystems

The BAI Aerosystems (BAIA) BQM-147 Dragon unmanned aerial vehicle is a tactical battlefield UAV operated by the US Marine Corps.

Development

[edit]

The Dragon began life in 1986, when the US Marines Corps contracted with the Applied Physics Laboratory (APL), an offshoot of Johns Hopkins UniversityinBaltimore, Maryland, that works on government technology development contracts, to build a small piston-powered UAV as an "expendable jammer" for battlefield electronics warfare. The program was logically named "ExJam". BAI Aerosystems was a subcontractor to APL and provided airframe parts.

"Creeping featurism" infected the program as the Marines considered more applications for the little drone, and in 1987 the program was given the new name of BQM-147A "Expendable Drone" or "Exdrone". The communications-jammer configuration of the vehicle was tested in the University of Maryland Glenn L. Martin wind tunnel, and successfully completed developmental flight testing at Naval Air Station Patuxent River and a combined Developmental Test/Operational Test at White Sands Missile Range. However, APL wasn't able to meet the schedule requested by the Marines for fielding the Exdrone, and so the program was passed on to BAI Aerosystems, with the Navy assisting by developing a video imaging system for tactical reconnaissance.

The NASA Langley Flight Research Center also assisted in the development effort, performing wind-tunnel tests and making recommendations for aerodynamic improvements, and after these changes the BQM-147A Exdrone went into service with the Marines in time to help them chase the Iraqis out of Kuwait City. A few years later, the UAV-JPO also bought several hundred Exdrones for demonstrations and training to help get tactical officers in tune with battlefield UAV capabilities.

The current "Dragon Drone" is an improved version of the Exdrone, obtained through a 1996 contract with the Marines. BAI renamed the UAV since the Exdrone wasn't really all that expendable, given that it carried a reasonably sophisticated sensor system and flight avionics. The Dragon Drone is a flying wing with a single tailfin that is symmetrically designed to allow it to fly with either side up.

The Dragon Drone is powered by a small piston engine. It can carry one of three different plug-in turrets, featuring daylight color TV with a laser rangefinder, daylight color TV, or infrared imager. It can also be fitted with an auxiliary fuel tank for increased range.

Condor

[edit]

The United States Coast Guard is now procuring a "navalized" version of the Dragon Drone under the name "Condor", and intends to use it with Coast Guard cutters and similar small ocean-patrol vessels. The Condor will be useful for missions such as search and rescue or hunting drug traffickers.

Launching and recovering a UAV off such small vessels is troublesome. Naval UAVs have traditionally been launched with a catapult or RATO boosters, and recovered using a net. Not only is this approach unsuited to smaller vessels, it is also not particularly reliable even on large vessels, with catapult launches causing drone damage, catapult failures leading to loss of the drone, and recoveries similarly leading to damage through collisions and unintended ditching.

A Saint Louis, Missouri, company named Advanced Aerospace Technologies Incorporated (AATI) has come up with an alternative scheme for launching and recovering a Dragon Drone or other small UAV from small vessels. The scheme involves the use of a parasail and is referred to the "runway in the sky (RITS)". In AATI demonstrations, a Dragon Drone is attached to a piggyback frame that harnesses the drone to the parasail. The parasail is reeled out into the wind until it reaches an altitude of about 250 meters (820 feet). The drone is then released, diving until it builds up enough speed for the operator to pull it out of the dive and sent it on its mission.

In recovery, the parasail is used to lift a tow line into the sky, with the tow line trailing a series of recovery lines hanging between the parasail and the ship. The drone is flown into the recovery lines, and a snaplock mechanism on the drone's wing grabs onto a line. The drone is then reeled back down to the ship. The tow line has more "give" to it than a recovery net, reducing the likelihood of damage.

The current RITS scheme can handle UAVs weighing up to 180 kilograms (400 pounds), but AATI thinks it can be scaled up to handle larger aircraft. AATI claims the system is inexpensive and easy to use. They also point out that the parasail could also be used to loft an antenna to allow over-the-horizon communications with a UAV. Whether the Coast Guard intends to use this scheme or not is uncertain, but it certainly is an interesting concept.

Specifications

[edit]

General characteristics

Performance

References

[edit]
[edit]
  1. ^ "BQM-147 Dragon".

Retrieved from "https://en.wikipedia.org/w/index.php?title=BQM-147_Dragon&oldid=1193422516"

Categories: 
1980s United States military reconnaissance aircraft
Unmanned aerial vehicles of the United States
Hidden categories: 
Articles with short description
Short description matches Wikidata
Articles needing additional references from January 2024
All articles needing additional references
Short description is different from Wikidata
 



This page was last edited on 3 January 2024, at 19:16 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki