Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Backscatter of waves in physical space  



1.1  Radar, especially weather radar  







2 In waveguides  





3 In photography  





4 See also  





5 References  














Backscatter






العربية
Deutsch
Español
Français
Italiano

Polski
Português
Русский
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Backscatter in photography, showing a Brocken spectre within the rings of a glory

Inphysics, backscatter (orbackscattering) is the reflectionofwaves, particles, or signals back to the direction from which they came. It is usually a diffuse reflection due to scattering, as opposed to specular reflection as from a mirror, although specular backscattering can occur at normal incidence with a surface. Backscattering has important applications in astronomy, photography, and medical ultrasonography. The opposite effect is forward scatter, e.g. when a translucent material like a cloud diffuses sunlight, giving soft light.

Backscatter of waves in physical space[edit]

Backscattering can occur in quite different physical situations, where the incoming waves or particles are deflected from their original direction by different mechanisms:

Sometimes, the scattering is more or less isotropic, i.e. the incoming particles are scattered randomly in various directions, with no particular preference for backward scattering. In these cases, the term "backscattering" just designates the detector location chosen for some practical reasons:

In other cases, the scattering intensity is enhanced in backward direction. This can have different reasons:

Backscattering properties of a target are wavelength dependent and can also be polarization dependent. Sensor systems using multiple wavelengths or polarizations can thus be used to infer additional information about target properties.

Radar, especially weather radar[edit]

Backscattering is the principle behind radar systems. In weather radar, backscattering is proportional to the 6th power of the diameter of the target multiplied by its inherent reflective properties, provided the wavelength is larger than the particle diameter (Rayleigh scattering). Water is almost 4 times more reflective than ice but droplets are much smaller than snow flakes or hail stones. So the backscattering is dependent on a mix of these two factors. The strongest backscatter comes from hail and large graupel (solid ice) due to their sizes, but non-Rayleigh (Mie scattering) effects can confuse interpretation. Another strong return is from melting snow or wet sleet, as they combine size and water reflectivity. They often show up as much higher ratesofprecipitation than actually occurring in what is called a brightband. Rain is a moderate backscatter, being stronger with large drops (such as from a thunderstorm) and much weaker with small droplets (such as mistordrizzle). Snow has rather weak backscatter. Dual polarization weather radars measure backscatter at horizontal and vertical polarizations to infer shape information from the ratio of the vertical and horizontal signals.

In waveguides[edit]

The backscattering method is also employed in fiber optics applications to detect optical faults. Light propagating through a fiber-optic cable gradually attenuates due to Rayleigh scattering. Faults are thus detected by monitoring the variation of part of the Rayleigh backscattered light. Since the backscattered light attenuates exponentially as it travels along the optical fiber cable, the attenuation characteristic is represented in a logarithmic scale graph. If the slope of the graph is steep, then power loss is high. If the slope is gentle, then optical fiber has a satisfactory loss characteristic.

The loss measurement by the backscattering method allows measurement of a fiber-optic cable at one end without cutting the optical fiber hence it can be conveniently used for the construction and maintenance of optical fibers.

In photography[edit]

Light from a smartphone flash reflecting sand particles.

The term backscatter in photography refers to light from a flashorstrobe reflecting back from particles in the lens's field of view causing specks of light to appear in the photo. This gives rise to what are sometimes referred to as orb artifacts. Photographic backscatter can result from snowflakes, rain or mist, or airborne dust. Due to the size limitations of the modern compact and ultra-compact cameras, especially digital cameras, the distance between the lens and the built-in flash has decreased, thereby decreasing the angle of light reflection to the lens and increasing the likelihood of light reflection off normally sub-visible particles. Hence, the orb artifact is commonplace with small digital or film camera photographs.[1][2]

See also[edit]

References[edit]

  1. ^ "Flash reflections from floating dust particles". Fujifilm.com. Fuji Film. Archived from the original on July 27, 2005. Retrieved 19 June 2017.
  • ^ Cynthia Baron. Adobe Photoshop Forensics: Sleuths, Truths, and Fauxtography. Cengage Learning; 2008. ISBN 1-59863-643-X. p. 310–.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Backscatter&oldid=1221716196"

    Category: 
    Scattering
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from December 2007
    All articles needing additional references
    All pages needing factual verification
    Wikipedia articles needing factual verification from June 2023
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 1 May 2024, at 16:03 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki