Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Representations  



1.1  Generating functions  





1.2  Explicit formula  





1.3  Representation by a differential operator  





1.4  Representation by an integral operator  







2 Integral Recurrence  





3 Another explicit formula  





4 Sums of pth powers  





5 The Bernoulli and Euler numbers  





6 Explicit expressions for low degrees  





7 Maximum and minimum  





8 Differences and derivatives  



8.1  Translations  





8.2  Symmetries  







9 Fourier series  





10 Inversion  





11 Relation to falling factorial  





12 Multiplication theorems  





13 Integrals  





14 Periodic Bernoulli polynomials  





15 See also  





16 References  





17 External links  














Bernoulli polynomials






العربية
Català
Čeština
Español
Français
Galego
Հայերեն
Italiano
Nederlands


Piemontèis
Polski
Русский
Српски / srpski
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Bernoulli polynomial)

Bernoulli polynomials

Inmathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansionoffunctions, and with the Euler–MacLaurin formula.

These polynomials occur in the study of many special functions and, in particular, the Riemann zeta function and the Hurwitz zeta function. They are an Appell sequence (i.e. a Sheffer sequence for the ordinary derivative operator). For the Bernoulli polynomials, the number of crossings of the x-axis in the unit interval does not go up with the degree. In the limit of large degree, they approach, when appropriately scaled, the sine and cosine functions.

A similar set of polynomials, based on a generating function, is the family of Euler polynomials.

Representations[edit]

The Bernoulli polynomials Bn can be defined by a generating function. They also admit a variety of derived representations.

Generating functions[edit]

The generating function for the Bernoulli polynomials is

The generating function for the Euler polynomials is

Explicit formula[edit]

for n ≥ 0, where Bk are the Bernoulli numbers, and Ek are the Euler numbers.

Representation by a differential operator[edit]

The Bernoulli polynomials are also given by

where D = d/dx is differentiation with respect to x and the fraction is expanded as a formal power series. It follows that
cf. § Integrals below. By the same token, the Euler polynomials are given by

Representation by an integral operator[edit]

The Bernoulli polynomials are also the unique polynomials determined by

The integral transform

on polynomials f, simply amounts to
This can be used to produce the inversion formulae below.

Integral Recurrence[edit]

In,[1][2] it is deduced and proved that the Bernoulli polynomials can be obtained by the following integral recurrence

Another explicit formula[edit]

An explicit formula for the Bernoulli polynomials is given by

That is similar to the series expression for the Hurwitz zeta function in the complex plane. Indeed, there is the relationship

where is the Hurwitz zeta function. The latter generalizes the Bernoulli polynomials, allowing for non-integer values ofn.

The inner sum may be understood to be the nthforward differenceof that is,

where is the forward difference operator. Thus, one may write

This formula may be derived from an identity appearing above as follows. Since the forward difference operator Δ equals

where D is differentiation with respect to x, we have, from the Mercator series,

As long as this operates on an mth-degree polynomial such as one may let n go from 0 only up tom.

An integral representation for the Bernoulli polynomials is given by the Nörlund–Rice integral, which follows from the expression as a finite difference.

An explicit formula for the Euler polynomials is given by

The above follows analogously, using the fact that

Sums of pth powers[edit]

Using either the above integral representationof or the identity , we have

(assuming 00 = 1).

The Bernoulli and Euler numbers[edit]

The Bernoulli numbers are given by

This definition gives for

An alternate convention defines the Bernoulli numbers as

The two conventions differ only when since

The Euler numbers are given by

Explicit expressions for low degrees[edit]

The first few Bernoulli polynomials are:

The first few Euler polynomials are:

Maximum and minimum[edit]

At higher n the amount of variation in between and gets large. For instance, but Lehmer (1940)[3] showed that the maximum value (Mn) of between 0 and 1 obeys

unless nis2 modulo 4, in which case
(where is the Riemann zeta function), while the minimum (mn) obeys
unless n = 0 modulo 4 , in which case

These limits are quite close to the actual maximum and minimum, and Lehmer gives more accurate limits as well.

Differences and derivatives[edit]

The Bernoulli and Euler polynomials obey many relations from umbral calculus:

(Δ is the forward difference operator). Also,
These polynomial sequences are Appell sequences:

Translations[edit]

These identities are also equivalent to saying that these polynomial sequences are Appell sequences. (Hermite polynomials are another example.)

Symmetries[edit]

Zhi-Wei Sun and Hao Pan [4] established the following surprising symmetry relation: If r + s + t = n and x + y + z = 1, then
where

Fourier series[edit]

The Fourier series of the Bernoulli polynomials is also a Dirichlet series, given by the expansion

Note the simple large n limit to suitably scaled trigonometric functions.

This is a special case of the analogous form for the Hurwitz zeta function

This expansion is valid only for 0 ≤ x ≤ 1 when n ≥ 2 and is valid for 0 < x <1 when n = 1.

The Fourier series of the Euler polynomials may also be calculated. Defining the functions

for , the Euler polynomial has the Fourier series
Note that the and are odd and even, respectively:

They are related to the Legendre chi function as

Inversion[edit]

The Bernoulli and Euler polynomials may be inverted to express the monomial in terms of the polynomials.

Specifically, evidently from the above section on integral operators, it follows that

and

Relation to falling factorial[edit]

The Bernoulli polynomials may be expanded in terms of the falling factorial as

where and
denotes the Stirling number of the second kind. The above may be inverted to express the falling factorial in terms of the Bernoulli polynomials:
where
denotes the Stirling number of the first kind.

Multiplication theorems[edit]

The multiplication theorems were given by Joseph Ludwig Raabe in 1851:

For a natural number m≥1,

Integrals[edit]

Two definite integrals relating the Bernoulli and Euler polynomials to the Bernoulli and Euler numbers are:[5]

Another integral formula states[6]

with the special case for

Periodic Bernoulli polynomials[edit]

Aperiodic Bernoulli polynomial Pn(x) is a Bernoulli polynomial evaluated at the fractional part of the argument x. These functions are used to provide the remainder term in the Euler–Maclaurin formula relating sums to integrals. The first polynomial is a sawtooth function.

Strictly these functions are not polynomials at all and more properly should be termed the periodic Bernoulli functions, and P0(x) is not even a function, being the derivative of a sawtooth and so a Dirac comb.

The following properties are of interest, valid for all :

See also[edit]

References[edit]

  1. ^ Hurtado Benavides, Miguel Ángel. (2020). De las sumas de potencias a las sucesiones de Appell y su caracterización a través de funcionales. [Tesis de maestría]. Universidad Sergio Arboleda. https://repository.usergioarboleda.edu.co/handle/11232/174
  • ^ Sergio A. Carrillo; Miguel Hurtado. Appell and Sheffer sequences: on their characterizations through functionals and examples. Comptes Rendus. Mathématique, Tome 359 (2021) no. 2, pp. 205-217. doi : 10.5802/crmath.172. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.172/
  • ^ Lehmer, D.H. (1940). "On the maxima and minima of Bernoulli polynomials". American Mathematical Monthly. 47: 533–538.
  • ^ Zhi-Wei Sun; Hao Pan (2006). "Identities concerning Bernoulli and Euler polynomials". Acta Arithmetica. 125 (1): 21–39. arXiv:math/0409035. Bibcode:2006AcAri.125...21S. doi:10.4064/aa125-1-3. S2CID 10841415.
  • ^ Takashi Agoh & Karl Dilcher (2011). "Integrals of products of Bernoulli polynomials". Journal of Mathematical Analysis and Applications. 381: 10–16. doi:10.1016/j.jmaa.2011.03.061.
  • ^ Elaissaoui, Lahoucine & Guennoun, Zine El Abidine (2017). "Evaluation of log-tangent integrals by series involving ζ(2n+1)". Integral Transforms and Special Functions. 28 (6): 460–475. arXiv:1611.01274. doi:10.1080/10652469.2017.1312366. S2CID 119132354.
  • Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001 (See chapter 12.11)
  • Dilcher, K. (2010), "Bernoulli and Euler Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • Cvijović, Djurdje; Klinowski, Jacek (1995). "New formulae for the Bernoulli and Euler polynomials at rational arguments". Proceedings of the American Mathematical Society. 123 (5): 1527–1535. doi:10.1090/S0002-9939-1995-1283544-0. JSTOR 2161144.
  • Guillera, Jesus; Sondow, Jonathan (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal. 16 (3): 247–270. arXiv:math.NT/0506319. doi:10.1007/s11139-007-9102-0. S2CID 14910435. (Reviews relationship to the Hurwitz zeta function and Lerch transcendent.)
  • Hugh L. Montgomery; Robert C. Vaughan (2007). Multiplicative number theory I. Classical theory. Cambridge tracts in advanced mathematics. Vol. 97. Cambridge: Cambridge Univ. Press. pp. 495–519. ISBN 978-0-521-84903-6.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Bernoulli_polynomials&oldid=1226021096"

    Categories: 
    Special functions
    Number theory
    Polynomials
    Hidden categories: 
    Use American English from March 2019
    All Wikipedia articles written in American English
    Articles with short description
    Short description matches Wikidata
    Articles with FAST identifiers
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with SUDOC identifiers
     



    This page was last edited on 28 May 2024, at 03:36 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki