Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Finite characteristic  





2 Gamma functionLegendre formula  





3 Sine function  





4 Polygamma function, harmonic numbers  





5 Hurwitz zeta function  





6 Periodic zeta function  





7 Polylogarithm  





8 Kummer's function  





9 Bernoulli polynomials  





10 Bernoulli map  





11 Characteristic zero  





12 Notes  





13 References  














Multiplication theorem






العربية
Català
Español

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; that is, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises.

Finite characteristic[edit]

The multiplication theorem takes two common forms. In the first case, a finite number of terms are added or multiplied to give the relation. In the second case, an infinite number of terms are added or multiplied. The finite form typically occurs only for the gamma and related functions, for which the identity follows from a p-adic relation over a finite field. For example, the multiplication theorem for the gamma function follows from the Chowla–Selberg formula, which follows from the theory of complex multiplication. The infinite sums are much more common, and follow from characteristic zero relations on the hypergeometric series.

The following tabulates the various appearances of the multiplication theorem for finite characteristic; the characteristic zero relations are given further down. In all cases, n and k are non-negative integers. For the special case of n = 2, the theorem is commonly referred to as the duplication formula.

Gamma function–Legendre formula[edit]

The duplication formula and the multiplication theorem for the gamma function are the prototypical examples. The duplication formula for the gamma function is

It is also called the Legendre duplication formula[1]orLegendre relation, in honor of Adrien-Marie Legendre. The multiplication theorem is

for integer k ≥ 1, and is sometimes called Gauss's multiplication formula, in honour of Carl Friedrich Gauss. The multiplication theorem for the gamma functions can be understood to be a special case, for the trivial Dirichlet character, of the Chowla–Selberg formula.

Sine function[edit]

Formally similar duplication formulas hold for the sine function, which are rather simple consequences of the trigonometric identities. Here one has the duplication formula

and, more generally, for any integer k, one has

Polygamma function, harmonic numbers[edit]

The polygamma function is the logarithmic derivative of the gamma function, and thus, the multiplication theorem becomes additive, instead of multiplicative:

for , and, for , one has the digamma function:

The polygamma identities can be used to obtain a multiplication theorem for harmonic numbers.

Hurwitz zeta function[edit]

For the Hurwitz zeta function generalizes the polygamma function to non-integer orders, and thus obeys a very similar multiplication theorem:

where is the Riemann zeta function. This is a special case of

and

Multiplication formulas for the non-principal characters may be given in the form of Dirichlet L-functions.

Periodic zeta function[edit]

The periodic zeta function[2] is sometimes defined as

where Lis(z) is the polylogarithm. It obeys the duplication formula

As such, it is an eigenvector of the Bernoulli operator with eigenvalue 21−s. The multiplication theorem is

The periodic zeta function occurs in the reflection formula for the Hurwitz zeta function, which is why the relation that it obeys, and the Hurwitz zeta relation, differ by the interchange of s → 1−s.

The Bernoulli polynomials may be obtained as a limiting case of the periodic zeta function, taking s to be an integer, and thus the multiplication theorem there can be derived from the above. Similarly, substituting q = log z leads to the multiplication theorem for the polylogarithm.

Polylogarithm[edit]

The duplication formula takes the form

The general multiplication formula is in the form of a Gauss sumordiscrete Fourier transform:

These identities follow from that on the periodic zeta function, taking z = log q.

Kummer's function[edit]

The duplication formula for Kummer's functionis

and thus resembles that for the polylogarithm, but twisted by i.

Bernoulli polynomials[edit]

For the Bernoulli polynomials, the multiplication theorems were given by Joseph Ludwig Raabe in 1851:

and for the Euler polynomials,

and

The Bernoulli polynomials may be obtained as a special case of the Hurwitz zeta function, and thus the identities follow from there.

Bernoulli map[edit]

The Bernoulli map is a certain simple model of a dissipative dynamical system, describing the effect of a shift operator on an infinite string of coin-flips (the Cantor set). The Bernoulli map is a one-sided version of the closely related Baker's map. The Bernoulli map generalizes to a k-adic version, which acts on infinite strings of k symbols: this is the Bernoulli scheme. The transfer operator corresponding to the shift operator on the Bernoulli scheme is given by

Perhaps not surprisingly, the eigenvectors of this operator are given by the Bernoulli polynomials. That is, one has that

It is the fact that the eigenvalues that marks this as a dissipative system: for a non-dissipative measure-preserving dynamical system, the eigenvalues of the transfer operator lie on the unit circle.

One may construct a function obeying the multiplication theorem from any totally multiplicative function. Let be totally multiplicative; that is, for any integers m, n. Define its Fourier series as

Assuming that the sum converges, so that g(x) exists, one then has that it obeys the multiplication theorem; that is, that

That is, g(x) is an eigenfunction of Bernoulli transfer operator, with eigenvalue f(k). The multiplication theorem for the Bernoulli polynomials then follows as a special case of the multiplicative function . The Dirichlet characters are fully multiplicative, and thus can be readily used to obtain additional identities of this form.

Characteristic zero[edit]

The multiplication theorem over a field of characteristic zero does not close after a finite number of terms, but requires an infinite series to be expressed. Examples include that for the Bessel function :

where and may be taken as arbitrary complex numbers. Such characteristic-zero identities follow generally from one of many possible identities on the hypergeometric series.

Notes[edit]

  1. ^ Weisstein, Eric W. "Legendre Duplication Formula". MathWorld.
  • ^ Apostol, Introduction to analytic number theory, Springer
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Multiplication_theorem&oldid=1184343849"

    Categories: 
    Special functions
    Zeta and L-functions
    Gamma and related functions
    Mathematical theorems
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from February 2021
    All articles needing additional references
     



    This page was last edited on 9 November 2023, at 21:07 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki