Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Heuristic statement  





2 Bernsteinvon Mises and maximum likelihood estimation  





3 Implications  





4 History  





5 Limitations  





6 Notes  





7 References  














Bernsteinvon Mises theorem






Deutsch
Français
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


InBayesian inference, the Bernstein–von Mises theorem provides the basis for using Bayesian credible sets for confidence statements in parametric models. It states that under some conditions, a posterior distribution converges in the limit of infinite data to a multivariate normal distribution centered at the maximum likelihood estimator with covariance matrix given by , where is the true population parameter and is the Fisher information matrix at the true population parameter value:[1]

The Bernstein–von Mises theorem links Bayesian inference with frequentist inference. It assumes there is some true probabilistic process that generates the observations, as in frequentism, and then studies the quality of Bayesian methods of recovering that process, and making uncertainty statements about that process. In particular, it states that Bayesian credible sets of a certain credibility level will asymptotically be confidence sets of confidence level , which allows for the interpretation of Bayesian credible sets.

Heuristic statement[edit]

In a model , under certain regularity conditions (finite-dimensional, well-specified, smooth, existence of tests), if the prior distribution on has a density with respect to the Lebesgue measure which is smooth enough (near bounded away from zero), the total variation distance between the rescaled posterior distribution (by centring and rescaling to ) and a Gaussian distribution centred on any efficient estimator and with the inverse Fisher information as variance will converge in probability to zero.

Bernstein–von Mises and maximum likelihood estimation[edit]

In case the maximum likelihood estimator is an efficient estimator, we can plug this in, and we recover a common, more specific, version of the Bernstein–von Mises theorem.

Implications[edit]

The most important implication of the Bernstein–von Mises theorem is that the Bayesian inference is asymptotically correct from a frequentist point of view. This means that for large amounts of data, one can use the posterior distribution to make, from a frequentist point of view, valid statements about estimation and uncertainty.

History[edit]

The theorem is named after Richard von Mises and S. N. Bernstein, although the first proper proof was given by Joseph L. Doob in 1949 for random variables with finite probability space.[2] Later Lucien Le Cam, his PhD student Lorraine Schwartz, David A. Freedman and Persi Diaconis extended the proof under more general assumptions.[citation needed]

Limitations[edit]

In case of a misspecified model, the posterior distribution will also become asymptotically Gaussian with a correct mean, but not necessarily with the Fisher information as the variance. This implies that Bayesian credible sets of level cannot be interpreted as confidence sets of level .[3]

In the case of nonparametric statistics, the Bernstein–von Mises theorem usually fails to hold with a notable exception of the Dirichlet process.

A remarkable result was found by Freedman in 1965: the Bernstein–von Mises theorem does not hold almost surely if the random variable has an infinite countable probability space; however, this depends on allowing a very broad range of possible priors. In practice, the priors used typically in research do have the desirable property even with an infinite countable probability space.

Different summary statistics such as the mode and mean may behave differently in the posterior distribution. In Freedman's examples, the posterior density and its mean can converge on the wrong result, but the posterior mode is consistent and will converge on the correct result.

Notes[edit]

  1. ^ van der Vaart, A.W. (1998). "10.2 Bernstein–von Mises Theorem". Asymptotic Statistics. Cambridge University Press. ISBN 0-521-78450-6.
  • ^ Doob, Joseph L. (1949). "Application of the theory of martingales". Colloq. Intern. Du C.N.R.S (Paris). 13: 23–27.
  • ^ Kleijn, B.J.K.; van der Vaart, A.W. (2012). "The Bernstein-Von–Mises theorem under misspecification". Electronic Journal of Statistics. 6: 354–381. doi:10.1214/12-EJS675. hdl:1887/61499.
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Bernstein–von_Mises_theorem&oldid=1209844572"

    Categories: 
    Bayesian inference
    Theorems in statistics
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from October 2021
     



    This page was last edited on 23 February 2024, at 20:41 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki