Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Production  



1.1  Processing  





1.2  Producing nanorods  





1.3  Alternate methods of synthesis  





1.4  Difficulties of processing  







2 Characteristics  



2.1  Morphology  





2.2  Properties  







3 See also  





4 References  














β-Carbon nitride






Bosanski
فارسی
Français

Tiếng Vit
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Beta carbon nitride)

Β-Carbon nitride

Lattice structure of (β-C3N4).]]

Names
IUPAC name

β-Carbon nitride

Identifiers

3D model (JSmol)

MeSH Carbon+nitride
  • InChI=1S/N4C3/c1-5-2-6(1)3(5)7(1,2)4(5)6

  • N13[C]25N4[C]16N2[C]34N56

Properties

Chemical formula

C3N4
Molar mass 92.061 g·mol−1
Structure[1]

Crystal structure

Hexagonal, hP14

Space group

P63/m No. 176

Lattice constant

a = 6.36 Å, c = 4.648 Å

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Infobox references

β-Carbon nitride (beta-carbon nitride), β-C3N4, is a superhard material predicted to be harder than diamond.[2]

The material was first proposed in 1985 by Amy Liu and Marvin L. Cohen. Examining the nature of crystalline bonds they theorised that carbon and nitrogen atoms could form a particularly short and strong bond in a stable crystal lattice in a ratio of 1:1.3, and that this material could be harder than diamond.[3]

Nanosized crystals and nanorods of β-carbon nitride can be prepared by mechanochemical processing.[4][5][1][6]

Production[edit]

Processing[edit]

β-C3N4 can be synthesized in a mechanochemical reaction. This method involves ball milling of high-purity graphite powders down to an amorphous nanoscale size under an argon atmosphere. Then argon is replaced by an NH3 gas atmosphere, which helps to form nanosized flake-like β-C3N4.[1] During ball milling, fracture and welding of the reactants and graphite powder particles occur repeatedly from ball/powder collisions. Plastic deformation of the graphite powder particles occur due to the shear bands decomposing into sub-grains that are separated by low-angle grain boundaries, further milling decreases the sub-grain size until nanosize sub-grains form. The high pressure and intense motion promotes catalytic dissociation of NH3 molecules into monatomic nitrogen on the fractured surface of the carbon. Nanosized carbon powders act substantially different from its bulk material as a result of particle dimension and surface area, causing the nanosized carbon to easily react with the free nitrogen atoms, forming β-C3N4 powder.[6]

Producing nanorods[edit]

Single crystal β-C3N4 nanorods can be formed after the powder-like or flake-like compound is thermally annealed with an NH3 gas flow. The size of the nanorods is determined by the temperature and time of thermal annealing. These nanorods grow faster in their axis direction than the diameter direction and have hemispherical-like ends. A cross section of the nanorods indicates that their section morphology is prismatic. It was discovered that they contain amorphous phases, however when annealed to 450 °C for three hours under an NH3 atmosphere, the amount of the amorphous phase diminished to almost none. These nanorods are dense and twinned rather than nanotubes. Synthesizing these nanorods through thermal annealing provides an effective, low-cost, high-yield method for the synthesis of single crystal nanorods.[6]

Alternate methods of synthesis[edit]

Rather than forming a powder or nanorod, the carbon nitride compound can alternatively be formed in thin amorphous films by either shock-wave compression technology, pyrolysis of high nitrogen content precursors, diode sputtering, solvothermal preparation, pulsed laser ablation, or ion implantation.[6]

Difficulties of processing[edit]

Although extensive studies on the process and synthesis of the formed carbon nitride have been reported, the nitrogen concentration of the compound tends to be below the ideal composition for C3N4. This is due to the low thermodynamic stability with respect to carbon phases and N2 gas, indicated by a positive value of the enthalpies of formation. The commercial exploitation of nanopowders is very limited by the high synthesis cost along with difficult methods of production that causes a low yield.[1][6]

Characteristics[edit]

Morphology[edit]

β-C3N4 has the same crystal structure as β-Si3N4 with a hexagonal network of tetrahedrally (sp3) bonded carbon and trigonal planar nitrogen (sp2).[6] Thermal annealing can be used to change the crystal morphology from flake-like into sphere- or rod-like structures.[1] The nanorods are generally straight and contain no other defects.[6]

Properties[edit]

A hardness equal or above that of diamond (the hardest known material) has been predicted,[3] but not yet demonstrated.

See also[edit]

References[edit]

  1. ^ a b c d e Yin, L. W.; Li, M. S.; Liu, Y. X.; Sui, J. L.; Wang, J. M. (2003). "Synthesis of Beta Carbon Nitride Nanosized Crystal through Mechanochemical Reaction". Journal of Physics: Condensed Matter. 15 (2): 309–314. Bibcode:2003JPCM...15..309Y. doi:10.1088/0953-8984/15/2/330. S2CID 250752987.
  • ^ Ball, P. (2000). "News: Crunchy filling". Nature. doi:10.1038/news000511-1. S2CID 211729235.
  • ^ a b Liu, A. Y.; Cohen, M. L. (1989). "Prediction of New Low Compressibility Solids". Science. 245 (4920): 841–842. Bibcode:1989Sci...245..841L. doi:10.1126/science.245.4920.841. PMID 17773359. S2CID 39596885.
  • ^ Niu, C.; Lu, Y. Z.; Lieber, C. M. (1993). "Experimental Realization of the Covalent Solid Carbon Nitride". Science. 261 (5119): 334–337. Bibcode:1993Sci...261..334N. doi:10.1126/science.261.5119.334. PMID 17836844. S2CID 21070125.
  • ^ Martín-Gil, J.; Martín-Gil, F. J.; Sarikaya, M.; Qian, M.; José-Yacamán, M.; Rubio, A. (1997). "Evidence of a Low-Compressibility Carbon Nitride with Defect-Zincblende Structure". Journal of Applied Physics. 81 (6): 2555–2559. Bibcode:1997JAP....81.2555M. doi:10.1063/1.364301.
  • ^ a b c d e f g Yin, L. W.; Bando, Y.; Li, M. S.; Liu, Y. X.; Qi, Y. X. (2003). "Unique Single-Crystalline Beta Carbon Nitride Nanorods". Advanced Materials. 15 (21): 1840–1844. Bibcode:2003AdM....15.1840Y. doi:10.1002/adma.200305307. S2CID 95431446.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Β-Carbon_nitride&oldid=1144523898"

    Categories: 
    Nitrides
    Superhard materials
    Hidden categories: 
    Chemical articles without CAS registry number
    Chemicals without a PubChem CID
    Articles without InChI source
    Chemical pages without ChemSpiderID
    Articles without EBI source
    Articles without KEGG source
    Articles without UNII source
    Articles containing unverified chemical infoboxes
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 14 March 2023, at 05:59 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki