Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Genes  





2 Initiation  





3 Function  





4 Avian β-defensins  





5 Evolution  





6 History  





7 Human proteins containing this domain  





8 See also  





9 References  





10 Further reading  














Beta defensin






Polski
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Beta defensin
Identifiers
SymbolDefensin_beta
PfamPF00711
InterProIPR001855
SCOP21bnb / SCOPe / SUPFAM
OPM superfamily54
OPM protein1ut3
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Beta defensins are a family of vertebrate defensins. The beta defensins are antimicrobial peptides implicated in the resistance of epithelial surfaces to microbial colonization.

Defensins are 2-6 kDa, cationic, microbicidal peptides active against many Gram-negative and Gram-positive bacteria, fungi, and enveloped viruses,[1] containing three pairs of intramolecular disulfide bonds. On the basis of their size and pattern of disulfide bonding, mammalian defensins are classified into alpha, beta and theta categories. Every mammalian species explored thus far has beta-defensins. In cows, as many as 13 beta-defensins exist in neutrophils. However, in other species, beta-defensins are more often produced by epithelial cells lining various organs (e.g. the epidermis, bronchial tree and genitourinary tract).

Human, rabbit and guinea-pig beta-defensins, as well as human beta-defensin-2 (hBD2), induce the activation and degranulation of mast cells, resulting in the release of histamine and prostaglandin D2.[2]

Genes

[edit]

β-defensins are coding for genes which impact the function of the innate immune system.[3] These genes are responsible for production of antimicrobial peptides found in white blood cells such as macrophages, granulocytes and NK-cells, β-defensins are also found in epithelial cells.[4] Single-nucleotide polymorphisms (SNPs) are found in genes coding for β-defensins.[5] The presences of SNPs are lower in the coding regions compared to non-coding regions.[5] The appearance of SNPs in the coding region will highly likely affecting the resistance against infections through changes in the protein sequences which will give rise to different biological functions.[5]

Initiation

[edit]

Receptors such as toll-like receptors (TLR) and nod-like receptors (NLR) will activate the immune system by binding of ligands such as lipopolysaccharides and peptidoglycan.[6] Toll-like receptors are expressed in intestinal epithelial cells [7]orantigen presenting cells (APCs) such as dendritic cells, B-lymphocytes and macrophages.[6] When the receptors are activated a cascade reaction will take place and substances such as cytokines and antimicrobial peptides[8] will be released.[6]

Function

[edit]

β-defensins are cationic and can therefore interact with the membrane of invading microbes, which are negative due to lipopolysaccharides (LPS) and lipoteichoic acid (LTA) found in the cell membrane.[1] The peptides have higher affinity to the binding site compared to Ca2+ and Mg2+ ions.[5] The peptides will therefore exchange place with those ions, thus affecting the stability of the membrane.[5] The peptides have a greater size compared with the ions which cause changes in the membrane structure.[5] Due to changes in the electric potential, peptides will pass across the membrane and thus aggregate into dimers.[9] Pore complex will be created as a result of breaking the hydrogen bonds between the amino acids in the terminal end of the strands connecting defensins monomers.[9] Formation of pore complex will cause membrane depolarization and cell lysis.[5]

Defensins not only have the ability to strengthen the innate immune system but can also enhance the adaptive immune systembychemotaxisofmonocytes, T-lymphocytes, dendritic cells and mast cells to the infection site.[5] Defensins will also improve the capacity of macrophage phagocytosis.[5]

Avian β-defensins

[edit]

β-defensins are classified in three classes and avian β-defensins constitute for one of the classes.[3] This division is based on Zhang's classification and both the length, the homology of the peptides and the gene structure are factors affecting the classification.[9]

Avian β-defensins are separated in avian heterophiles and non-heterophiles. Avian heterophiles can be divided into two sub-classes, depending on the number of present homologous residues in the genome.[9]

Avian heterophiles lack protective oxidative mechanisms, such as superoxide and myeloperoxidase, making non-oxidative mechanisms, such as lysosomes and cationic peptides, even more important.[9]

Evolution

[edit]

β-defensins genes are found across the vertebrates, including mammals, reptiles, birds and fish.[10] The fact that alpha and theta defensins are absent in older vertebrates, like birds and fishes, indicates that defensins must have evolved from the same ancestral gene coding for β-defensins.[11] Indeed, these defensins of this superfamily are related to the 'big defensins' which are found in invertebrate animals, indicating even earlier origins.[10]

In 2001, it was thought that β-defensins were similar to the ancestral defensin from a comparison of sequences of β-defensins, α-defensins and insect defensins.[12] Subsequent structural analyses have suggested that the β-defensins, α-defensins, θ-defensins and big defensins share an evolutionary origin, but are separate to the defensins found in insects, fungi and plants.[13]

In addition to other antimicrobial defensins, there are related defensin-like proteins with have evolved other functions. These include toxins found in snakes (e.g. crotamine), bearded lizards and platypus.[14]

History

[edit]

The first beta-defensin discovered was Tracheal Antimicrobial Peptide, found in the bovine airway in 1991.[15] The first human beta-defensin, HBD1, was discovered in 1995,[2] followed by the HBD2 in 1997.[16]

Human proteins containing this domain

[edit]

DEFB1; DEFB103A; DEFB105A; DEFB105B; DEFB106; DEFB108B; DEFB109; DEFB110; DEFB111; DEFB114; DEFB130; DEFB136; DEFB4; SPAG11A;

See also

[edit]

References

[edit]
  1. ^ a b White SH, Wimley WC, Selsted ME (August 1995). "Structure, function, and membrane integration of defensins". Curr. Opin. Struct. Biol. 5 (4): 521–7. doi:10.1016/0959-440X(95)80038-7. PMID 8528769.
  • ^ a b Bensch KW, Raida M, Mägert HJ, Schulz-Knappe P, Forssmann WG (July 1995). "hBD-1: a novel beta-defensin from human plasma". FEBS Lett. 368 (2): 331–5. doi:10.1016/0014-5793(95)00687-5. PMID 7628632. S2CID 84766207.
  • ^ a b Hellgren O, Sheldon BC (July 2011). "Locus-specific protocol for nine different innate immune genes (antimicrobial peptides: β-defensins) across passerine bird species reveals within-species coding variation and a case of trans-species polymorphisms". Molecular Ecology Resources. 11 (4): 686–692. doi:10.1111/j.1755-0998.2011.02995.x. PMID 21676198. S2CID 12499158.
  • ^ Ganz T (September 2003). "Defensins: antimicrobial peptides of innate immunity". Nat. Rev. Immunol. 3 (9): 710–20. doi:10.1038/nri1180. PMID 12949495. S2CID 3360031.
  • ^ a b c d e f g h i van Dijk A, Veldhuizen EJ, Haagsman HP (July 2008). "Avian defensins". Vet. Immunol. Immunopathol. 124 (1–2): 1–18. doi:10.1016/j.vetimm.2007.12.006. PMC 7112556. PMID 18313763.
  • ^ a b c Mogensen TH (April 2009). "Pathogen recognition and inflammatory signaling in innate immune defenses". Clin. Microbiol. Rev. 22 (2): 240–73, Table of Contents. doi:10.1128/CMR.00046-08. PMC 2668232. PMID 19366914.
  • ^ Abreu MT (February 2010). "Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function". Nat. Rev. Immunol. 10 (2): 131–44. doi:10.1038/nri2707. PMID 20098461. S2CID 21789611.
  • ^ Vora P, Youdim A, Thomas LS, Fukata M, Tesfay SY, Lukasek K, Michelsen KS, Wada A, Hirayama T, Arditi M, Abreu MT (November 2004). "Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells". J. Immunol. 173 (9): 5398–405. doi:10.4049/jimmunol.173.9.5398. PMID 15494486.
  • ^ a b c d e Sugiarto H, Yu PL (October 2004). "Avian antimicrobial peptides: the defense role of beta-defensins". Biochem. Biophys. Res. Commun. 323 (3): 721–7. doi:10.1016/j.bbrc.2004.08.162. PMID 15381059.
  • ^ a b Zhu, Shunyi; Gao, Bin (January 2013). "Evolutionary origin of β-defensins". Developmental & Comparative Immunology. 39 (1–2): 79–84. doi:10.1016/j.dci.2012.02.011. ISSN 0145-305X. PMID 22369779.
  • ^ Semple CA, Rolfe M, Dorin JR (2003). "Duplication and selection in the evolution of primate beta-defensin genes". Genome Biol. 4 (5): R31. doi:10.1186/gb-2003-4-5-r31. PMC 156587. PMID 12734011.
  • ^ Hoover DM, Chertov O, Lubkowski J (October 2001). "The structure of human beta-defensin-1: new insights into structural properties of beta-defensins". J. Biol. Chem. 276 (42): 39021–6. doi:10.1074/jbc.M103830200. PMID 11486002.
  • ^ Shafee, Thomas M. A.; Lay, Fung T.; Hulett, Mark D.; Anderson, Marilyn A. (2016-06-13). "The Defensins Consist of Two Independent, Convergent Protein Superfamilies". Molecular Biology and Evolution. 33 (9): 2345–2356. doi:10.1093/molbev/msw106. ISSN 0737-4038. PMID 27297472.
  • ^ Whittington, C. M.; Papenfuss, A. T.; Bansal, P.; Torres, A. M.; Wong, E. S.W.; Deakin, J. E.; Graves, T.; Alsop, A.; Schatzkamer, K.; Kremitzki, C.; Ponting, C. P. (2008-05-07). "Defensins and the convergent evolution of platypus and reptile venom genes". Genome Research. 18 (6): 986–994. doi:10.1101/gr.7149808. ISSN 1088-9051. PMC 2413166. PMID 18463304.
  • ^ Diamond, G.; Zasloff, M.; Eck, H.; Brasseur, M.; Maloy, W.; Bevins, C. (1991). "Tracheal antimicrobial peptide, a novel cysteine-rich peptide from mammalian tracheal mucosa: Peptide isolation and cloning of a cDNA". Proc. Natl. Acad. Sci. USA. 88 (9): 3952–3956. doi:10.1073/pnas.88.9.3952. PMC 51571. PMID 2023943.
  • ^ Harder J, Siebert R, Zhang Y, Matthiesen P, Christophers E, Schlegelberger B, Schröder JM (December 1997). "Mapping of the gene encoding human beta-defensin-2 (DEFB2) to chromosome region 8p22-p23.1". Genomics. 46 (3): 472–5. doi:10.1006/geno.1997.5074. PMID 9441752.
  • Further reading

    [edit]
    • Liu L, Zhao C, Heng HH, Ganz T (August 1997). "The human beta-defensin-1 and alpha-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry". Genomics. 43 (3): 316–20. doi:10.1006/geno.1997.4801. PMID 9268634.

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Beta_defensin&oldid=1209360430"

    Categories: 
    Defensins
    Peripheral membrane proteins
    Antimicrobial peptides
     



    This page was last edited on 21 February 2024, at 14:56 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki