Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Scale invariance  





2 Examples  



2.1  Quantum electrodynamics  





2.2  Quantum chromodynamics  





2.3  SU(N) Non-Abelian gauge theory  





2.4  Standard Model HiggsYukawa Couplings  





2.5  Minimal Supersymmetric Standard Model  







3 See also  





4 References  





5 Further reading  














Beta function (physics)






العربية
Deutsch
Español
Bahasa Indonesia
Italiano

Português
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Intheoretical physics, specifically quantum field theory, a beta function, β(g), encodes the dependence of a coupling parameter, g, on the energy scale, μ, of a given physical process described by quantum field theory. It is defined as

and, because of the underlying renormalization group, it has no explicit dependence on μ, so it only depends on μ implicitly through g. This dependence on the energy scale thus specified is known as the running of the coupling parameter, a fundamental feature of scale-dependence in quantum field theory, and its explicit computation is achievable through a variety of mathematical techniques.

Scale invariance[edit]

If the beta functions of a quantum field theory vanish, usually at particular values of the coupling parameters, then the theory is said to be scale-invariant. Almost all scale-invariant QFTs are also conformally invariant. The study of such theories is conformal field theory.

The coupling parameters of a quantum field theory can run even if the corresponding classical field theory is scale-invariant. In this case, the non-zero beta function tells us that the classical scale invariance is anomalous.

Examples[edit]

Beta functions are usually computed in some kind of approximation scheme. An example is perturbation theory, where one assumes that the coupling parameters are small. One can then make an expansion in powers of the coupling parameters and truncate the higher-order terms (also known as higher loop contributions, due to the number of loops in the corresponding Feynman graphs).

Here are some examples of beta functions computed in perturbation theory:

Quantum electrodynamics[edit]

The one-loop beta function in quantum electrodynamics (QED) is

or, equivalently,

written in terms of the fine structure constant in natural units, α = e2/4π.[1]

This beta function tells us that the coupling increases with increasing energy scale, and QED becomes strongly coupled at high energy. In fact, the coupling apparently becomes infinite at some finite energy, resulting in a Landau pole. However, one cannot expect the perturbative beta function to give accurate results at strong coupling, and so it is likely that the Landau pole is an artifact of applying perturbation theory in a situation where it is no longer valid.

Quantum chromodynamics[edit]

The one-loop beta function in quantum chromodynamics with flavours and scalar colored bosons is

or

written in terms of αs = .

Assuming ns=0, if nf ≤ 16, the ensuing beta function dictates that the coupling decreases with increasing energy scale, a phenomenon known as asymptotic freedom. Conversely, the coupling increases with decreasing energy scale. This means that the coupling becomes large at low energies, and one can no longer rely on perturbation theory.

SU(N) Non-Abelian gauge theory[edit]

While the (Yang–Mills) gauge group of QCD is , and determines 3 colors, we can generalize to any number of colors, , with a gauge group . Then for this gauge group, with Dirac fermions in a representation of and with complex scalars in a representation , the one-loop beta function is

where is the quadratic Casimirof and is another Casimir invariant defined by for generators of the Lie algebra in the representation R. (For WeylorMajorana fermions, replace by, and for real scalars, replace by.) For gauge fields (i.e. gluons), necessarily in the adjointof, ; for fermions in the fundamental (or anti-fundamental) representation of , . Then for QCD, with , the above equation reduces to that listed for the quantum chromodynamics beta function.

This famous result was derived nearly simultaneously in 1973 by Politzer,[2] Gross and Wilczek,[3] for which the three were awarded the Nobel Prize in Physics in 2004. Unbeknownst to these authors, G. 't Hooft had announced the result in a comment following a talk by K. Symanzik at a small meeting in Marseilles in June 1972, but he never published it.[4]

Standard Model Higgs–Yukawa Couplings[edit]

In the Standard Model, quarks and leptons have "Yukawa couplings" to the Higgs boson. These determine the mass of the particle. Most all of the quarks' and leptons' Yukawa couplings are small compared to the top quark's Yukawa coupling. These Yukawa couplings change their values depending on the energy scale at which they are measured, through running. The dynamics of Yukawa couplings of quarks are determined by the renormalization group equation:

,

where is the color gauge coupling (which is a function of and associated with asymptotic freedom) and is the Yukawa coupling. This equation describes how the Yukawa coupling changes with energy scale .

The Yukawa couplings of the up, down, charm, strange and bottom quarks, are small at the extremely high energy scale of grand unification, GeV. Therefore, the term can be neglected in the above equation. Solving, we then find that is increased slightly at the low energy scales at which the quark masses are generated by the Higgs, GeV.

On the other hand, solutions to this equation for large initial values cause the rhs to quickly approach smaller values as we descend in energy scale. The above equation then locks to the QCD coupling . This is known as the (infrared) quasi-fixed point of the renormalization group equation for the Yukawa coupling.[5][6] No matter what the initial starting value of the coupling is, if it is sufficiently large it will reach this quasi-fixed point value, and the corresponding quark mass is predicted.

The value of the quasi-fixed point is fairly precisely determined in the Standard Model, leading to a predicted top quark mass of 230  GeV.[citation needed] The observed top quark mass of 174 GeV is slightly lower than the standard model prediction by about 30% which suggests there may be more Higgs doublets beyond the single standard model Higgs boson.

Minimal Supersymmetric Standard Model[edit]

Renomalization group studies in the Minimal Supersymmetric Standard Model (MSSM) of grand unification and the Higgs–Yukawa fixed points were very encouraging that the theory was on the right track. So far, however, no evidence of the predicted MSSM particles has emerged in experiment at the Large Hadron Collider.

See also[edit]

References[edit]

  1. ^ Srednicki, Mark Allen (2017). Quantum field theory (13th printing ed.). Cambridge: Cambridge Univ. Press. p. 446. ISBN 978-0-521-86449-7.
  • ^ H.David Politzer (1973). "Reliable Perturbative Results for Strong Interactions?". Phys. Rev. Lett. 30 (26): 1346–1349. Bibcode:1973PhRvL..30.1346P. doi:10.1103/PhysRevLett.30.1346.
  • ^ D.J. Gross and F. Wilczek (1973). "Asymptotically Free Gauge Theories. 1". Phys. Rev. D. 8 (10): 3633–3652. Bibcode:1973PhRvD...8.3633G. doi:10.1103/PhysRevD.8.3633..
  • ^ G. 't Hooft (1999). "When was Asymptotic Freedom discovered?". Nucl. Phys. B Proc. Suppl. 74 (1): 413–425. arXiv:hep-th/9808154. Bibcode:1999NuPhS..74..413T. doi:10.1016/S0920-5632(99)00207-8. S2CID 17360560.
  • ^ Pendleton, B.; Ross, G.G. (1981). "Mass and Mixing Angle Predictions from Infrared Fixed points". Phys. Lett. B98 (4): 291. Bibcode:1981PhLB...98..291P. doi:10.1016/0370-2693(81)90017-4.
  • ^ Hill, C.T. (1981). "Quark and Lepton masses from Renormalization group fixed points". Phys. Rev. D24 (3): 691. Bibcode:1981PhRvD..24..691H. doi:10.1103/PhysRevD.24.691.
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Beta_function_(physics)&oldid=1222981201"

    Categories: 
    Renormalization group
    Scaling symmetries
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from November 2021
    Articles with GND identifiers
     



    This page was last edited on 9 May 2024, at 03:43 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki