Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Coupling constant  





3 Classification  





4 Examples  





5 See also  





6 References  














Bi-isotropic material







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Bi isotropic)

Inphysics, engineering and materials science, bi-isotropic materials have the special optical property that they can rotate the polarization of light in either refractionortransmission. This does not mean all materials with twist effect fall in the bi-isotropic class. The twist effect of the class of bi-isotropic materials is caused by the chirality and non-reciprocity of the structure of the media, in which the electric and magnetic field of an electromagnetic wave (or simply, light) interact in an unusual way.

Definition

[edit]

For most materials, the electric field E and electric displacement field D (as well as the magnetic field B and inductive magnetic field H) are parallel to one another. These simple mediums are called isotropic, and the relationships between the fields can be expressed using constants. For more complex materials, such as crystals and many metamaterials, these fields are not necessarily parallel. When one set of the fields are parallel, and one set are not, the material is called anisotropic. Crystals typically have D fields which are not aligned with the E fields, while the B and H fields remain related by a constant. Materials where either pair of fields is not parallel are called anisotropic.

In bi-isotropic media, the electric and magnetic fields are coupled. The constitutive relations are

D, E, B, H, ε and μ are corresponding to usual electromagnetic qualities. ξ and ζ are the coupling constants, which is the intrinsic constant of each media.

This can be generalized to the case where ε, μ, ξ and ζ are tensors (i.e. they depend on the direction within the material), in which case the media is referred to as bi-anisotropic.[1]

Coupling constant

[edit]

ξ and ζ can be further related to the Tellegen (referred to as reciprocity) χ and chirality κ parameter

after substitution of the above equations into the constitutive relations, gives

Classification

[edit]
non-chiral chiral
reciprocal simple isotropic medium Pasteur Medium
non-reciprocal Tellegen Medium General bi-isotropic medium

Examples

[edit]

Pasteur media can be made by mixing metal helices of one handedness into a resin. Care must be exercised to secure isotropy: the helices must be randomly oriented so that there is no special direction.[2] [3]

The magnetoelectric effect can be understood from the helix as it is exposed to the electromagnetic field. The helix geometry can be considered as an inductor. For such a structure the magnetic component of an EM wave induces a current on the wire and further influences the electric component of the same EM wave.

From the constitutive relations, for Pasteur media, χ = 0,

Hence, the D field is delayed by a phase i due to the response from the H field.

Tellegen media is the opposite of Pasteur media, which is electromagnetic: the electric component will cause the magnetic component to change. Such a medium is not as straightforward as the concept of handedness. Electric dipoles bonded with magnets belong to this kind of media. When the dipoles align themselves to the electric field component of the EM wave, the magnets will also respond, as they are bounded together. The change in direction of the magnets will therefore change the magnetic component of the EM wave, and so on.

From the constitutive relations, for Tellegen media, κ = 0,

This implies that the B field responds in phase with the H field.

See also

[edit]

References

[edit]
  1. ^ Mackay, Tom G.; Lakhtakia, Akhlesh (2010). Electromagnetic Anisotropy and Bianisotropy: A Field Guide. Singapore: World Scientific. Archived from the original on 2010-10-13. Retrieved 2010-07-11.
  • ^ Lakhtakia, Akhlesh (1994). Beltrami Fields in Chiral Media. Singapore: World Scientific. Archived from the original on 2010-01-03. Retrieved 2010-07-11.
  • ^ Lindell, I.V.; Shivola, A.H.; Tretyakov, S.A.; Viitanen, A.J. Electromagnetic Waves in Chiral and Bi-isotropic Media.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Bi-isotropic_material&oldid=969713596"

    Categories: 
    Orientation (geometry)
    Materials science
     



    This page was last edited on 27 July 2020, at 00:24 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki