Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Military aviation tactics  





2 Space warfare  





3 Big ocean theory  





4 See also  





5 References  














Big sky theory







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inaviation, the Big Sky Theory is that two randomly flying bodies are very unlikely to collide, as the three-dimensional space is so large relative to the bodies. Some aviation safety rules involving altimetry and navigation standards are based on this concept. It does not apply when aircraft are flying along specific narrow routes, such as an airport traffic pattern or jet airway.

The Big Sky Theory has been mathematically modeled, using a gas law approach.[1] This implies that collisions of aircraft in free flight should be extremely rare in en-route airspace, whereas operational errors such as violations of formal separation standards should be relatively common. Three critical parameters are the number of flying objects per unit volume, their speed, and their size. Larger, faster objects, flying in a traffic-rich environment are more collision-prone.

Military aviation tactics

[edit]

The theory is also relevant in military aviation tactics, especially regarding targeting of aircraft and missiles by ground-based, non-guided weapons without visual spotting. For example, consider an F-16, which has a combined fuselage/wing area of roughly 670 square feet (62.2 square metres), and flying at 6,000 feet (1,829 metres) at night or above clouds. Ground-based, non-guided antiaircraft guns are firing randomly hoping to hit it. Their maximum slant range is 10,000 feet (3,048 metres).

There are 20,626 square degrees in the visible sky hemisphere, assuming no horizon obstructions. The 670 square ft (≈62 m²) aircraft would subtend an angle of 0.24 degrees at 6,000 ft (≈1,800 m). Therefore, the chance of a single randomly fired unguided shot hitting the aircraft would be one in 20626 / 0.24 / 0.24, or one in 358,090.

Targeted firing reduces these odds. By sound or by guessing, isolating the firing region to about one fifth of the sky might be possible. If you assume 10 guns firing 10 rounds per second over one fifth of the sky, perfectly coordinating their firing evenly across that region, and crudely tracking the aircraft as it flies over, the chance of hitting it would be 358,090 / 5 / 10 / 10, or one chance in 716 each second.

Flying at 500 mph or 805 km/h (733 ft/s or 223 m/s), each second the aircraft would cross seven angular degrees of sky. With a 10,000 ft (≈3,000 m) slant range, the anti-aircraft guns could cover a cone of sky 100 degrees wide, assuming a common gun location. Therefore, the aircraft would be within range for 100/7 or 14.3 seconds, and the total chance of hitting it during a single flyover pass would be 716 / 14.3 or one chance in 50.

When coordinating corridors for friendly artillery trajectories through airspace, it is sometimes assumed (rarely, and for emergency expediency) that similar unlikelinesses apply. This is often referred to as the "Big Sky - Small Bomb" theory.

Space warfare

[edit]

Space warfare tactics are also affected by the Big Sky Theory, if unguided projectiles are used. At the vast engagement distances, the subtended angle of the target would be minuscule, and the projectile flight time to target would be great, possibly on the order of an hour or more. If the target vehicle randomly maneuvered every few minutes, the chance of a hit would be extremely small, even if many projectiles were fired. A space weapon using unguided kinetic projectiles flew on the Soviet Almaz military space station.[2]

Big ocean theory

[edit]

There is a related marine concept called the big ocean theory. It holds that two randomly placed, randomly maneuvering vessels in an ocean are very unlikely to collide.

See also

[edit]

References

[edit]
  1. ^ Knecht, W.R. (2001). Modeling the Big Sky Theory. Proceedings of the Human Factors and Ergonomics Society 45th annual meeting, 87-91, Santa Monica, CA: Human Factors and Ergonomics Society.
  • ^ Oberg, James (1999). "The Nature of Space Power" (PDF). Space Power Theory. National Space Studies Center / US Air Force Academy. p. 53. Archived from the original (PDF) on 2018-07-12. Retrieved 2013-01-18.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Big_sky_theory&oldid=1167399571"

    Category: 
    Aviation safety
    Hidden categories: 
    Articles that may contain original research from December 2022
    All articles that may contain original research
     



    This page was last edited on 27 July 2023, at 14:13 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki