Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Solutions  





2 Other notations  





3 Related problems  





4 Citations  





5 References  














Bipartite realization problem






Русский
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The bipartite realization problem is a classical decision problemingraph theory, a branch of combinatorics. Given two finite sequences and of natural numbers with , the problem asks whether there is a labeled simple bipartite graph such that is the degree sequence of this bipartite graph.

Solutions

[edit]

The problem belongs to the complexity class P. This can be proven using the Gale–Ryser theorem, i.e., one has to validate the correctness of inequalities.

Other notations

[edit]

The problem can also be stated in terms of zero-one matrices. The connection can be seen if one realizes that each bipartite graph has a biadjacency matrix where the column sums and row sums correspond to and . The problem is then often denoted by 0-1-matrices for given row and column sums. In the classical literature the problem was sometimes stated in the context of contingency tablesbycontingency tables with given marginals. A third formulation is in terms of degree sequences of simple directed graphs with at most one loop per vertex. In this case the matrix is interpreted as the adjacency matrix of such a directed graph. When are pairs of non-negative integers ((a1,b1), ..., (an,bn)) the indegree-outdegree pairs of a labeled directed graph with at most one loop per vertex?

[edit]

Similar problems describe the degree sequencesofsimple graphs and simple directed graphs. The first problem is the so-called graph realization problem. The second is known as the digraph realization problem. The bipartite realization problem is equivalent to the question, if there exists a labeled bipartite subgraph of a complete bipartite graph to a given degree sequence. The hitchcock problem asks for such a subgraph minimizing the sum of the costs on each edge which are given for the complete bipartite graph. A further generalization is the f-factor problem for bipartite graphs, i.e. for a given bipartite graph one searches for a subgraph possessing a certain degree sequence. The problem uniform sampling a bipartite graph to a fixed degree sequence is to construct a solution for the bipartite realization problem with the additional constraint that each such solution comes with the same probability. This problem was shown to be in FPTAS for regular sequencesbyCatherine Greenhill[1] (for regular bipartite graphs with a forbidden 1-factor) and for half-regular sequences by Erdős et al.[2] The general problem is still unsolved.

Citations

[edit]

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Bipartite_realization_problem&oldid=1215424479"

Categories: 
Computational problems in graph theory
Bipartite graphs
 



This page was last edited on 25 March 2024, at 01:34 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki