Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 References  














Block (data storage)






العربية
Čeština
Deutsch
Español
فارسی

ि
Қазақша

Norsk bokmål
Polski
Português
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Incomputing (specifically data transmission and data storage), a block,[1] sometimes called a physical record, is a sequence of bytesorbits, usually containing some whole number of records, having a maximum length; a block size.[2] Data thus structured are said to be blocked. The process of putting data into blocks is called blocking, while deblocking is the process of extracting data from blocks. Blocked data is normally stored in a data buffer, and read or written a whole block at a time. Blocking reduces the overhead and speeds up the handling of the data stream.[3] For some devices, such as magnetic tape and CKD disk devices, blocking reduces the amount of external storage required for the data. Blocking is almost universally employed when storing data to 9-track magnetic tape, NAND flash memory, and rotating media such as floppy disks, hard disks, and optical discs.

Most file systems are based on a block device, which is a level of abstraction for the hardware responsible for storing and retrieving specified blocks of data, though the block size in file systems may be a multiple of the physical block size. This leads to space inefficiency due to internal fragmentation, since file lengths are often not integer multiples of block size, and thus the last block of a file may remain partially empty. This will create slack space. Some newer file systems, such as Btrfs and FreeBSD UFS2, attempt to solve this through techniques called block suballocation and tail merging. Other file systems such as ZFS support variable block sizes.[4][5]

Block storage is normally abstracted by a file system or database management system (DBMS) for use by applications and end users. The physical or logical volumes accessed via block I/O may be devices internal to a server, directly attached via SCSIorFibre Channel, or distant devices accessed via a storage area network (SAN) using a protocol such as iSCSI, or AoE. DBMSes often use their own block I/O for improved performance and recoverability as compared to layering the DBMS on top of a file system.

References[edit]

  1. ^ Blaauw, Gerrit Anne; Brooks, Jr., Frederick Phillips; Buchholz, Werner (1962), "4: Natural Data Units" (PDF), in Buchholz, Werner (ed.), Planning a Computer System – Project Stretch, McGraw-Hill Book Company, Inc. / The Maple Press Company, York, PA., pp. 39–40, LCCN 61-10466, archived (PDF) from the original on 2017-04-03, retrieved 2017-04-03, […] Terms used here to describe the structure imposed by the machine design, in addition to bit, are listed below.
    Byte denotes a group of bits used to encode a character, or the number of bits transmitted in parallel to and from input-output units. A term other than character is used here because a given character may be represented in different applications by more than one code, and different codes may use different numbers of bits (i.e., different byte sizes). In input-output transmission the grouping of bits may be completely arbitrary and have no relation to actual characters. (The term is coined from bite, but respelled to avoid accidental mutation to bit.)
    Aword consists of the number of data bits transmitted in parallel from or to memory in one memory cycle. Word size is thus defined as a structural property of the memory. (The term catena was coined for this purpose by the designers of the Bull GAMMA 60 [fr] computer.)
    Block refers to the number of words transmitted to or from an input-output unit in response to a single input-output instruction. Block size is a structural property of an input-output unit; it may have been fixed by the design or left to be varied by the program. […]
  • ^ "Available hard drive space, block sizes, and size terminology". CNET. 2009-05-05. Retrieved 2014-04-29.
  • ^ Chang, S. K. "Physical Structures". Captain SK. Retrieved 2014-04-29.
  • ^ Balik, Rachel (2013-03-29). "Bruning Questions: ZFS Record Size". Joyent. Retrieved 2013-03-29.
  • ^ Bourbonnais, Roch (2006-06-07). "Tuning ZFS recordsize". Oracle.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Block_(data_storage)&oldid=1219330368"

    Categories: 
    Computer data storage
    Data transmission
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from April 2014
    All articles needing additional references
    Use dmy dates from March 2020
     



    This page was last edited on 17 April 2024, at 03:02 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki