Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 Conversions  





3 References  














Bordwell thermodynamic cycle







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


ABordwell thermodynamic cycle use experimentally determined and reasonable estimates of Gibbs free energy (ΔG˚) values to determine unknown and experimentally inaccessible values.[1][2]

Overview

[edit]

Analogous to Hess's Law which deal with the summation of enthalpy (ΔH) values, Bordwell thermodynamic cycles deal with the summation of Gibbs free energy (ΔG) values. Free energies used in these systems are most often determined from equilibriums and redox potentials, both of which correlate with free energy. This is with the caveat that redox scales are not absolute and thus it is important that all electrons are evaluated in redox pairs. This removes the offset of a given reference potential, otherwise the values are reported as potentials (V) against that reference. It is also worth recognizing that the values of the pKa system are just moderately transformed Keq values.

When working with equilibrium energy values such as ΔG˚ and E˚1/2 values it common to employ a naught (˚) symbol. The naught has a two component definition. The first more common component is that it refers to the physical conditions being at standard state. The second more significant component is that energy refers to an equilibrium energy even if there is a conditionally defined standard state. Just as activation energy with the double dagger ΔG refers the energy difference between reactants and the transition state, ΔG˚ refers to the energy difference between reactants and products. The nought is assumed when working with equilibrium values such as Keq and pKa.

The example below contains four reactions that can be related through their associated free energies. [ An example of the former is the dissolution of ammonium nitrate. This process is spontaneous even though it is endothermic. It occurs because the favored increase in disorder that accompanies dissolution outweighs the unfavored increase in energy.] Given any three values and the fourth can be calculated. Its important to note that the fourth reaction in the series is an inverted homolytic bond cleavage stated in terms of free energy. The chemical transformation for the associated -ΔG˚ is the same it would be for a bond dissociation energy (BDE). However, the -ΔG˚ is not a BDE, since BDE are by definition stated in terms of enthalpy (ΔH˚). The two values are of course related by ΔG˚ = ΔH˚ - TΔS˚ and as a result educated comparisons can be made between ΔG˚ and ΔH˚.

R- ⇌ e- + R. (Reaction 1)
ΔGo
rxn 1
= -nFE˚1/2
H+ + e- ⇌ H. (Reaction 2)
ΔGo
rxn 2
= -nFE˚1/2
RH ⇌ H+ + R- (Reaction 3)
ΔGo
rxn 3
= RT(2.303)pKa
R. + H. ⇌ RH (Reaction 4)
ΔGo
rxn 4
= -RTln(Keq)

Conversions

[edit]

Relationships between Keq, pKeq, E˚1/2, and ΔG˚.[3]

ΔG˚ = -RTln(Keq)
ΔG˚ = (2.303)RT(pKeq)
ΔG˚ = -nFE˚1/2

Useful conversion factors:

-23.06 (kcal/mol)(e)−1(V)−1
1.37(pKeq) kcal/mol
1.37[-log(Keq)] kcal/mol

References

[edit]
  1. ^ Bordwell, Frederick G. (1988-12-01). "Equilibrium acidities in dimethyl sulfoxide solution". Accounts of Chemical Research. 21 (12): 456–463. doi:10.1021/ar00156a004.
  • ^ Gardner, Kimberly A.; Linda L. Kuehnert; James M. Mayer (1997-05-01). "Hydrogen Atom Abstraction by Permanganate: Oxidations of Arylalkanes in Organic Solvents". Inorganic Chemistry. 36 (10): 2069–2078. doi:10.1021/ic961297y. PMID 11669825.
  • ^ Silberberg, Martin (2004). Chemistry: The Molecular Nature of Matter and Change (4 ed.). McGraw-Hill Science/Engineering/Math. ISBN 0-07-310169-9.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Bordwell_thermodynamic_cycle&oldid=1074484283"

    Category: 
    Thermodynamic cycles
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 28 February 2022, at 14:07 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki