Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Hamiltonian  



1.1  Hilbert space  







2 Phase diagram  





3 Mean-field theory  





4 Implementation in optical lattices  



4.1  Subtleties and approximations  







5 Experimental results  





6 Further applications  





7 Numerical simulation  





8 Generalizations  





9 See also  





10 References  














BoseHubbard model






Català
Русский
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Bose–Hubbard model gives a description of the physics of interacting spinless bosons on a lattice. It is closely related to the Hubbard model that originated in solid-state physics as an approximate description of superconducting systems and the motion of electrons between the atoms of a crystalline solid. The model was introduced by Gersch and Knollman[1] in 1963 in the context of granular superconductors. (The term 'Bose' in its name refers to the fact that the particles in the system are bosonic.) The model rose to prominence in the 1980s after it was found to capture the essence of the superfluid-insulator transition in a way that was much more mathematically tractable than fermionic metal-insulator models.[2][3][4]

The Bose–Hubbard model can be used to describe physical systems such as bosonic atoms in an optical lattice,[5] as well as certain magnetic insulators.[6][7] Furthermore, it can be generalized and applied to Bose–Fermi mixtures, in which case the corresponding Hamiltonian is called the Bose–Fermi–Hubbard Hamiltonian.

Hamiltonian[edit]

The physics of this model is given by the Bose–Hubbard Hamiltonian:

Here, denotes summation over all neighboring lattice sites and , while and are bosonic creation and annihilation operators such that gives the number of particles on site . The model is parametrized by the hopping amplitude that describes boson mobility in the lattice, the on-site interaction which can be attractive () or repulsive (), and the chemical potential , which essentially sets the number of particles. If unspecified, typically the phrase 'Bose–Hubbard model' refers to the case where the on-site interaction is repulsive.

This Hamiltonian has a global symmetry, which means that it is invariant (its physical properties are unchanged) by the transformation . In a superfluid phase, this symmetry is spontaneously broken.

Hilbert space[edit]

The dimension of the Hilbert space of the Bose–Hubbard model is given by , where is the total number of particles, while denotes the total number of lattice sites. At fixed or, the Hilbert space dimension grows polynomially, but at a fixed density of bosons per site, it grows exponentially as . Analogous Hamiltonians may be formulated to describe spinless fermions (the Fermi-Hubbard model) or mixtures of different atom species (Bose–Fermi mixtures, for example). In the case of a mixture, the Hilbert space is simply the tensor product of the Hilbert spaces of the individual species. Typically additional terms are included to model interaction between species.

Phase diagram[edit]

At zero temperature, the Bose–Hubbard model (in the absence of disorder) is in either a Mott insulating state at small , or in a superfluid state at large .[8] The Mott insulating phases are characterized by integer boson densities, by the existence of an energy gap for particle-hole excitations, and by zero compressibility. The superfluid is characterized by long-range phase coherence, a spontaneous breaking of the Hamiltonian's continuous symmetry, a non-zero compressibility and superfluid susceptibility. At non-zero temperature, in certain parameter regimes a regular fluid phase appears that does not break the symmetry and does not display phase coherence. Both of these phases have been experimentally observed in ultracold atomic gases.[9]

In the presence of disorder, a third, "Bose glass" phase exists.[4] The Bose glass is a Griffiths phase, and can be thought of as a Mott insulator containing rare 'puddles' of superfluid. These superfluid pools are not interconnected, so the system remains insulating, but their presence significantly changes model thermodynamics. The Bose glass phase is characterized by finite compressibility, the absence of a gap, and by an infinite superfluid susceptibility.[4] It is insulating despite the absence of a gap, as low tunneling prevents the generation of excitations which, although close in energy, are spatially separated. The Bose glass has a non-zero Edwards–Anderson order parameter[10][11] and has been suggested (but not proven) to display replica symmetry breaking.[12]

Mean-field theory[edit]

The phases of the clean Bose–Hubbard model can be described using a mean-field Hamiltonian:[13]where is the lattice co-ordination number. This can be obtained from the full Bose–Hubbard Hamiltonian by setting where , neglecting terms quadratic in (assumedly infinitesimal) and relabelling . Because this decoupling breaks the symmetry of the initial Hamiltonian for all non-zero values of , this parameter acts as a superfluid order parameter. For simplicity, this decoupling assumes to be the same on every site, which precludes exotic phases such as supersolids or other inhomogeneous phases. (Other decouplings are possible.) The phase diagram can be determined by calculating the energy of this mean-field Hamiltonian using second-order perturbation theory and finding the condition for which . To do this, the Hamiltonian is written as a site-local piece plus a perturbation:where the bilinear terms and its conjugate are treated as the perturbation. The order parameter is assumed to be small near the phase transition. The local term is diagonal in the Fock basis, giving the zeroth-order energy contribution:where is an integer that labels the filling of the Fock state. The perturbative piece can be treated with second-order perturbation theory, which leads to:The energy can be expressed as a series expansion in even powers of the order parameter (also known as the Landau formalism):After doing so, the condition for the mean-field, second-order phase transition between the Mott insulator and the superfluid phase is given by:where the integer describes the filling of the Mott insulating lobe. Plotting the line for different integer values of generates the boundary of the different Mott lobes, as shown in the phase diagram.[4]

Implementation in optical lattices[edit]

Ultracold atoms in optical lattices are considered a standard realization of the Bose–Hubbard model. The ability to tune model parameters using simple experimental techniques and the lack of the lattice dynamics that are present in solid-state electronic systems mean that ultracold atoms offer a clean, controllable realisation of the Bose–Hubbard model.[14][5] The biggest downside with optical lattice technology is the trap lifetime, with atoms typically trapped for only a few tens of seconds.

To see why ultracold atoms offer such a convenient realization of Bose–Hubbard physics, the Bose–Hubbard Hamiltonian can be derived starting from the second quantized Hamiltonian that describes a gas of ultracold atoms in the optical lattice potential. This Hamiltonian is given by:

,

where is the optical lattice potential, is the (contact) interaction amplitude, and is the chemical potential. The tight binding approximation results in the substitution , which leads to the Bose–Hubbard Hamiltonian the physics are restricted to the lowest band () and the interactions are local at the level of the discrete mode. Mathematically, this can be stated as the requirement that except for case . Here, is a Wannier function for a particle in an optical lattice potential localized around site of the lattice and for the thBloch band.[15]

Subtleties and approximations[edit]

The tight-binding approximation significantly simplifies the second quantized Hamiltonian, though it introduces several limitations at the same time:

Experimental results[edit]

Quantum phase transitions in the Bose–Hubbard model were experimentally observed by Greiner et al.,[9] and density dependent interaction parameters were observed by Immanuel Bloch's group.[18] Single-atom resolution imaging of the Bose–Hubbard model has been possible since 2009 using quantum gas microscopes.[19][20][21]

Further applications[edit]

The Bose–Hubbard model is of interest in the field of quantum computation and quantum information. Entanglement of ultra-cold atoms can be studied using this model.[22]

Numerical simulation[edit]

In the calculation of low energy states the term proportional to means that large occupation of a single site is improbable, allowing for truncation of local Hilbert space to states containing at most particles. Then the local Hilbert space dimension is The dimension of the full Hilbert space grows exponentially with the number of lattice sites, limiting exact computer simulations of the entire Hilbert space to systems of 15-20 particles in 15-20 lattice sites.[citation needed] Experimental systems contain several million sites, with average filling above unity.[citation needed]

One-dimensional lattices may be studied using density matrix renormalization group (DMRG) and related techniques such as time-evolving block decimation (TEBD). This includes calculating the ground state of the Hamiltonian for systems of thousands of particles on thousands of lattice sites, and simulating its dynamics governed by the time-dependent Schrödinger equation. Recently,[when?] two dimensional lattices have been studied using projected entangled pair states, a generalization of matrix product states in higher dimensions, both for the ground state[23] and finite temperature.[24]

Higher dimensions are significantly more difficult due to the rapid growth of entanglement.[25]

All dimensions may be treated by quantum Monte Carlo algorithms,[citation needed] which provide a way to study properties of the Hamiltonian's thermal states, and in particular the ground state.

Generalizations[edit]

Bose–Hubbard-like Hamiltonians may be derived for different physical systems containing ultracold atom gas in the periodic potential. They include:

See also[edit]

References[edit]

  1. ^ Gersch, H.; Knollman, G. (1963). "Quantum Cell Model for Bosons". Physical Review. 129 (2): 959. Bibcode:1963PhRv..129..959G. doi:10.1103/PhysRev.129.959.
  • ^ Ma, M.; Halperin, B. I.; Lee, P. A. (1986-09-01). "Strongly disordered superfluids: Quantum fluctuations and critical behavior". Physical Review B. 34 (5): 3136–3143. Bibcode:1986PhRvB..34.3136M. doi:10.1103/PhysRevB.34.3136. PMID 9940047.
  • ^ Giamarchi, T.; Schulz, H. J. (1988-01-01). "Anderson localization and interactions in one-dimensional metals". Physical Review B. 37 (1): 325–340. Bibcode:1988PhRvB..37..325G. doi:10.1103/PhysRevB.37.325. PMID 9943580.
  • ^ a b c d Fisher, Matthew P. A.; Grinstein, G.; Fisher, Daniel S. (1989). "Boson localization and the superfluid-insulator transition" (PDF). Physical Review B. 40 (1): 546–70. Bibcode:1989PhRvB..40..546F. doi:10.1103/PhysRevB.40.546. PMID 9990946.,
  • ^ a b Jaksch, D.; Zoller, P. (2005). "The cold atom Hubbard toolbox". Annals of Physics. 315 (1): 52. arXiv:cond-mat/0410614. Bibcode:2005AnPhy.315...52J. CiteSeerX 10.1.1.305.9031. doi:10.1016/j.aop.2004.09.010. S2CID 12352119.
  • ^ Giamarchi, Thierry; Rüegg, Christian; Tchernyshyov, Oleg (2008). "Bose–Einstein condensation in magnetic insulators". Nature Physics. 4 (3): 198–204. arXiv:0712.2250. Bibcode:2008NatPh...4..198G. doi:10.1038/nphys893. S2CID 118661914.
  • ^ Zapf, Vivien; Jaime, Marcelo; Batista, C. D. (2014-05-15). "Bose-Einstein condensation in quantum magnets". Reviews of Modern Physics. 86 (2): 563–614. Bibcode:2014RvMP...86..563Z. doi:10.1103/RevModPhys.86.563.
  • ^ Kühner, T.; Monien, H. (1998). "Phases of the one-dimensional Bose-Hubbard model". Physical Review B. 58 (22): R14741. arXiv:cond-mat/9712307. Bibcode:1998PhRvB..5814741K. doi:10.1103/PhysRevB.58.R14741. S2CID 118911555.
  • ^ a b Greiner, Markus; Mandel, Olaf; Esslinger, Tilman; Hänsch, Theodor W.; Bloch, Immanuel (2002). "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms". Nature. 415 (6867): 39–44. Bibcode:2002Natur.415...39G. doi:10.1038/415039a. PMID 11780110. S2CID 4411344.
  • ^ Morrison, S.; Kantian, A.; Daley, A. J.; Katzgraber, H. G.; Lewenstein, M.; Büchler, H. P.; Zoller, P. (2008). "Physical replicas and the Bose glass in cold atomic gases". New Journal of Physics. 10 (7): 073032. arXiv:0805.0488. Bibcode:2008NJPh...10g3032M. doi:10.1088/1367-2630/10/7/073032. ISSN 1367-2630. S2CID 2822103.
  • ^ Thomson, S. J.; Walker, L. S.; Harte, T. L.; Bruce, G. D. (2016-11-03). "Measuring the Edwards-Anderson order parameter of the Bose glass: A quantum gas microscope approach". Physical Review A. 94 (5): 051601. arXiv:1607.05254. Bibcode:2016PhRvA..94e1601T. doi:10.1103/PhysRevA.94.051601. S2CID 56027819.
  • ^ Thomson, S. J.; Krüger, F. (2014). "Replica symmetry breaking in the Bose glass". EPL. 108 (3): 30002. arXiv:1312.0515. Bibcode:2014EL....10830002T. doi:10.1209/0295-5075/108/30002. S2CID 56307253.
  • ^ Sachdev, Subir (2011). Quantum phase transitions. Cambridge University Press. ISBN 9780521514682. OCLC 693207153.
  • ^ Jaksch, D.; Bruder, C.; Cirac, J.; Gardiner, C.; Zoller, P. (1998). "Cold Bosonic Atoms in Optical Lattices". Physical Review Letters. 81 (15): 3108. arXiv:cond-mat/9805329. Bibcode:1998PhRvL..81.3108J. doi:10.1103/PhysRevLett.81.3108. S2CID 55578669.
  • ^ a b Lühmann, D. S. R.; Jürgensen, O.; Sengstock, K. (2012). "Multi-orbital and density-induced tunneling of bosons in optical lattices". New Journal of Physics. 14 (3): 033021. arXiv:1108.3013. Bibcode:2012NJPh...14c3021L. doi:10.1088/1367-2630/14/3/033021. S2CID 119216031.
  • ^ Sakmann, K.; Streltsov, A. I.; Alon, O. E.; Cederbaum, L. S. (2011). "Optimal time-dependent lattice models for nonequilibrium dynamics". New Journal of Physics. 13 (4): 043003. arXiv:1006.3530. Bibcode:2011NJPh...13d3003S. doi:10.1088/1367-2630/13/4/043003. S2CID 118591567.
  • ^ Łącki, M.; Zakrzewski, J. (2013). "Fast Dynamics for Atoms in Optical Lattices". Physical Review Letters. 110 (6): 065301. arXiv:1210.7957. Bibcode:2013PhRvL.110f5301L. doi:10.1103/PhysRevLett.110.065301. PMID 23432268. S2CID 29095052.
  • ^ Will, S.; Best, T.; Schneider, U.; Hackermüller, L.; Lühmann, D. S. R.; Bloch, I. (2010). "Time-resolved observation of coherent multi-body interactions in quantum phase revivals". Nature. 465 (7295): 197–201. Bibcode:2010Natur.465..197W. doi:10.1038/nature09036. PMID 20463733. S2CID 4382706.
  • ^ Bakr, Waseem S.; Gillen, Jonathon I.; Peng, Amy; Fölling, Simon; Greiner, Markus (2009). "A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice". Nature. 462 (7269): 74–77. arXiv:0908.0174. Bibcode:2009Natur.462...74B. doi:10.1038/nature08482. PMID 19890326. S2CID 4419426.
  • ^ Bakr, W. S.; Peng, A.; Tai, M. E.; Ma, R.; Simon, J.; Gillen, J. I.; Fölling, S.; Pollet, L.; Greiner, M. (2010-07-30). "Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level". Science. 329 (5991): 547–550. arXiv:1006.0754. Bibcode:2010Sci...329..547B. doi:10.1126/science.1192368. ISSN 0036-8075. PMID 20558666. S2CID 3778258.
  • ^ Weitenberg, Christof; Endres, Manuel; Sherson, Jacob F.; Cheneau, Marc; Schauß, Peter; Fukuhara, Takeshi; Bloch, Immanuel; Kuhr, Stefan (2011). "Single-spin addressing in an atomic Mott insulator". Nature. 471 (7338): 319–324. arXiv:1101.2076. Bibcode:2011Natur.471..319W. doi:10.1038/nature09827. PMID 21412333. S2CID 4352129.
  • ^ Romero-Isart, O; Eckert, K; Rodó, C; Sanpera, A (2007). "Transport and entanglement generation in the Bose–Hubbard model". Journal of Physics A: Mathematical and Theoretical. 40 (28): 8019–31. arXiv:quant-ph/0703177. Bibcode:2007JPhA...40.8019R. doi:10.1088/1751-8113/40/28/S11. S2CID 11673450.
  • ^ Jordan, J; Orus, R; Vidal, G (2009). "Numerical study of the hard-core Bose-Hubbard model on an infinite square lattice". Phys. Rev. B. 79 (17): 174515. arXiv:0901.0420. Bibcode:2009PhRvB..79q4515J. doi:10.1103/PhysRevB.79.174515. S2CID 119073171.
  • ^ Kshetrimayum, A.; Rizzi, M.; Eisert, J.; Orus, R. (2019). "Tensor Network Annealing Algorithm for Two-Dimensional Thermal States". Phys. Rev. Lett. 122 (7): 070502. arXiv:1809.08258. Bibcode:2019PhRvL.122g0502K. doi:10.1103/PhysRevLett.122.070502. PMID 30848636. S2CID 53125536.
  • ^ Eisert, J.; Cramer, M.; Plenio, M. B. (2010). "Colloquium: Area laws for the entanglement entropy". Reviews of Modern Physics. 82 (1): 277. arXiv:0808.3773. Bibcode:2010RvMP...82..277E. doi:10.1103/RevModPhys.82.277.
  • ^ Góral, K.; Santos, L.; Lewenstein, M. (2002). "Quantum Phases of Dipolar Bosons in Optical Lattices". Physical Review Letters. 88 (17): 170406. arXiv:cond-mat/0112363. Bibcode:2002PhRvL..88q0406G. doi:10.1103/PhysRevLett.88.170406. PMID 12005738. S2CID 41827359.
  • ^ Sowiński, T.; Dutta, O.; Hauke, P.; Tagliacozzo, L.; Lewenstein, M. (2012). "Dipolar Molecules in Optical Lattices". Physical Review Letters. 108 (11): 115301. arXiv:1109.4782. Bibcode:2012PhRvL.108k5301S. doi:10.1103/PhysRevLett.108.115301. PMID 22540482. S2CID 5438190.
  • ^ Tsuchiya, S.; Kurihara, S.; Kimura, T. (2004). "Superfluid–Mott insulator transition of spin-1 bosons in an optical lattice". Physical Review A. 70 (4): 043628. arXiv:cond-mat/0209676. Bibcode:2004PhRvA..70d3628T. doi:10.1103/PhysRevA.70.043628. S2CID 118566913.
  • ^ Gurarie, V.; Pollet, L.; Prokof’Ev, N. V.; Svistunov, B. V.; Troyer, M. (2009). "Phase diagram of the disordered Bose-Hubbard model". Physical Review B. 80 (21): 214519. arXiv:0909.4593. Bibcode:2009PhRvB..80u4519G. doi:10.1103/PhysRevB.80.214519. S2CID 54075502.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Bose–Hubbard_model&oldid=1231520243"

    Category: 
    Quantum lattice models
    Hidden categories: 
    Use American English from January 2019
    All Wikipedia articles written in American English
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from June 2020
    All articles with vague or ambiguous time
    Vague or ambiguous time from November 2022
    Articles with unsourced statements from November 2021
    Wikipedia articles needing clarification from November 2021
     



    This page was last edited on 28 June 2024, at 19:03 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki