Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Language design  





3 Examples  



3.1  Adding two values  





3.2  Hello World!  





3.3  ROT13  





3.4  Simulation of abiogenesis  







4 See also  





5 Notes  





6 References  














Brainfuck






العربية
Asturianu
Català
Čeština
Dansk
Deutsch
Eesti
Español
Esperanto
Euskara
فارسی
Français

Bahasa Indonesia
Íslenska
Italiano
עברית
Lombard
Magyar
Bahasa Melayu
Nederlands

Norsk bokmål
Oʻzbekcha / ўзбекча

Polski
Português
Română
Русский
Simple English
Slovenčina
Slovenščina
Српски / srpski
Suomi
Svenska
ி

Тоҷикӣ
Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Brainfuck
ParadigmEsoteric, imperative, structured
Designed byUrban Müller
First appearedSeptember 1993
Typing disciplineTypeless
Filename extensions.b, .bf
Influenced by
P′′, FALSE
Influenced
Malbolge

Brainfuck is an esoteric programming language created in 1993 by Swiss physics student Urban Müller.[1] Designed to be extremely minimalistic, the language consists of only eight simple commands, a data pointer and an instruction pointer.[2]

Brainfuck is an example of a so-called Turing tarpit: it can be used to write any program, but it is not practical to do so, because it provides so little abstraction that the programs get very long or complicated. While Brainfuck is fully Turing complete, it is not intended for practical use, but to challenge and amuse programmers.[3][4] Brainfuck requires one to break commands into microscopic steps.

The language takes its name from the slang term brainfuck, which refers to things so complicated or unusual that they exceed the limits of one's understanding, as it was not meant or made for designing actual software but to challenge the boundaries of computer programming.

Because the language's name contains profanity, many substitutes are used, such as brainfsck, branflakes, brainoof, brainfrick, BrainF, and BF.[5]

History

[edit]

Müller designed Brainfuck with the goal of implementing the smallest possible compiler,[6] inspired by the 1024-byte compiler for the FALSE programming language.[7] Müller's original compiler was implemented in machine language and compiled to a binary with a size of 296 bytes. He uploaded the first Brainfuck compiler to Aminet in 1993. The program came with a "Readme" file, which briefly described the language, and challenged the reader "Who can program anything useful with it? :)". Müller also included an interpreter and some examples. A second version of the compiler used only 240 bytes.[8]

Language design

[edit]

The language consists of eight commands. A brainfuck program is a sequence of these commands, possibly interspersed with other characters (which are ignored). The commands are executed sequentially, with some exceptions: an instruction pointer begins at the first command, and each command it points to is executed, after which it normally moves forward to the next command. The program terminates when the instruction pointer moves past the last command.

The brainfuck language uses a simple machine model consisting of the program and instruction pointer, as well as a one-dimensional array of at least 30,000 byte cells initialized to zero; a movable data pointer (initialized to point to the leftmost byte of the array); and two streams of bytes for input and output (most often connected to a keyboard and a monitor respectively, and using the ASCII character encoding).

The eight language commands each consist of a single character:

Character Meaning
> Increment the data pointer by one (to point to the next cell to the right).
< Decrement the data pointer by one (to point to the next cell to the left).
+ Increment the byte at the data pointer by one.
- Decrement the byte at the data pointer by one.
. Output the byte at the data pointer.
, Accept one byte of input, storing its value in the byte at the data pointer.
[ If the byte at the data pointer is zero, then instead of moving the instruction pointer forward to the next command, jumpitforward to the command after the matching ] command.
] If the byte at the data pointer is nonzero, then instead of moving the instruction pointer forward to the next command, jump it back to the command after the matching [ command.[a]

[ and ] match as parentheses usually do: each [ matches exactly one ] and vice versa, the [ comes first, and there can be no unmatched [or] between the two.

Brainfuck programs are usually difficult to comprehend. This is partly because any mildly complex task requires a long sequence of commands and partly because the program's text gives no direct indications of the program's state. These, as well as Brainfuck's inefficiency and its limited input/output capabilities, are some of the reasons it is not used for serious programming. Nonetheless, like any Turing complete language, Brainfuck is theoretically capable of computing any computable function or simulating any other computational model, if given access to an unlimited amount of memory.[9] A variety of Brainfuck programs have been written.[10] Although Brainfuck programs, especially complicated ones, are difficult to write, it is quite trivial to write an interpreter for Brainfuck in a more typical language such as C due to its simplicity. Brainfuck interpreters written in the Brainfuck language itself also exist.[11][12]

Examples

[edit]

Adding two values

[edit]

As a first, simple example, the following code snippet will add the current cell's value to the next cell: Each time the loop is executed, the current cell is decremented, the data pointer moves to the right, that next cell is incremented, and the data pointer moves left again. This sequence is repeated until the starting cell is 0.

[->+<]

This can be incorporated into a simple addition program as follows:

++       Cell c0 = 2
> +++++  Cell c1 = 5

[        Start your loops with your cell pointer on the loop counter (c1 in our case)
< +      Add 1 to c0
> -      Subtract 1 from c1
]        End your loops with the cell pointer on the loop counter

At this point our program has added 5 to 2 leaving 7 in c0 and 0 in c1
but we cannot output this value to the terminal since it is not ASCII encoded

To display the ASCII character "7" we must add 48 to the value 7
We use a loop to compute 48 = 6 * 8

++++ ++++  c1 = 8 and this will be our loop counter again
[
< +++ +++  Add 6 to c0
> -        Subtract 1 from c1
]
< .        Print out c0 which has the value 55 which translates to "7"!

Hello World!

[edit]

The following program prints "Hello World!" and a newline to the screen:

[ This program prints "Hello World!" and a newline to the screen; its
  length is 106 active command characters. [It is not the shortest.]

  This loop is an "initial comment loop", a simple way of adding a comment
  to a BF program such that you don't have to worry about any command
  characters. Any ".", ",", "+", "-", "<" and ">" characters are simply
  ignored, the "[" and "]" characters just have to be balanced. This
  loop and the commands it contains are ignored because the current cell
  defaults to a value of 0; the 0 value causes this loop to be skipped.
]
++++++++                Set Cell #0 to 8
[
    >++++               Add 4 to Cell #1; this will always set Cell #1 to 4
    [                   as the cell will be cleared by the loop
        >++             Add 2 to Cell #2
        >+++            Add 3 to Cell #3
        >+++            Add 3 to Cell #4
        >+              Add 1 to Cell #5
        <<<<-           Decrement the loop counter in Cell #1
    ]                   Loop until Cell #1 is zero; number of iterations is 4
    >+                  Add 1 to Cell #2
    >+                  Add 1 to Cell #3
    >-                  Subtract 1 from Cell #4
    >>+                 Add 1 to Cell #6
    [<]                 Move back to the first zero cell you find; this will
                        be Cell #1 which was cleared by the previous loop
    <-                  Decrement the loop Counter in Cell #0
]                       Loop until Cell #0 is zero; number of iterations is 8

The result of this is:
Cell no :   0   1   2   3   4   5   6
Contents:   0   0  72 104  88  32   8
Pointer :   ^

>>.                     Cell #2 has value 72 which is 'H'
>---.                   Subtract 3 from Cell #3 to get 101 which is 'e'
+++++++..+++.           Likewise for 'llo' from Cell #3
>>.                     Cell #5 is 32 for the space
<-.                     Subtract 1 from Cell #4 for 87 to give a 'W'
<.                      Cell #3 was set to 'o' from the end of 'Hello'
+++.------.--------.    Cell #3 for 'rl' and 'd'
>>+.                    Add 1 to Cell #5 gives us an exclamation point
>++.                    And finally a newline from Cell #6

For readability, this code has been spread across many lines, and blanks and comments have been added. Brainfuck ignores all characters except the eight commands +-<>[],. so no special syntax for comments is needed (as long as the comments do not contain the command characters). The code could just as well have been written as:

++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++++++..+++.>>.<-.<.+++.------.--------.>>+.>++.

ROT13

[edit]

This program enciphers its input with the ROT13 cipher. To do this, it must map characters A-M (ASCII 65–77) to N-Z (78-90), and vice versa. Also it must map a-m (97-109) to n-z (110-122) and vice versa. It must map all other characters to themselves; it reads characters one at a time and outputs their enciphered equivalents until it reads an EOF (here assumed to be represented as either -1 or "no change"), at which point the program terminates.

-,+[                         Read first character and start outer character reading loop
    -[                       Skip forward if character is 0
        >>++++[>++++++++<-]  Set up divisor (32) for division loop
                               (MEMORY LAYOUT: dividend copy remainder divisor quotient zero zero)
        <+<-[                Set up dividend (x minus 1) and enter division loop
            >+>+>-[>>>]      Increase copy and remainder / reduce divisor / Normal case: skip forward
            <[[>+<-]>>+>]    Special case: move remainder back to divisor and increase quotient
            <<<<<-           Decrement dividend
        ]                    End division loop
    ]>>>[-]+                 End skip loop; zero former divisor and reuse space for a flag
    >--[-[<->+++[-]]]<[         Zero that flag unless quotient was 2 or 3; zero quotient; check flag
        ++++++++++++<[       If flag then set up divisor (13) for second division loop
                               (MEMORY LAYOUT: zero copy dividend divisor remainder quotient zero zero)
            >-[>+>>]         Reduce divisor; Normal case: increase remainder
            >[+[<+>-]>+>>]   Special case: increase remainder / move it back to divisor / increase quotient
            <<<<<-           Decrease dividend
        ]                    End division loop
        >>[<+>-]             Add remainder back to divisor to get a useful 13
        >[                   Skip forward if quotient was 0
            -[               Decrement quotient and skip forward if quotient was 1
                -<<[-]>>     Zero quotient and divisor if quotient was 2
            ]<<[<<->>-]>>    Zero divisor and subtract 13 from copy if quotient was 1
        ]<<[<<+>>-]          Zero divisor and add 13 to copy if quotient was 0
    ]                        End outer skip loop (jump to here if ((character minus 1)/32) was not 2 or 3)
    <[-]                     Clear remainder from first division if second division was skipped
    <.[-]                    Output ROT13ed character from copy and clear it
    <-,+                     Read next character
]                            End character reading loop

Simulation of abiogenesis

[edit]

In 2024, a Google research project used Brainfuck as the basis of an artificial digital environment. In this environment, they found that replicators arose naturally and competed with each other for domination of the environment. Blaise Agüera y Arcas; Alakuijala, Jyrki; Evans, James; Laurie, Ben; Mordvintsev, Alexander; Niklasson, Eyvind; Randazzo, Ettore; Versari, Luca (2024). "Computational Life: How Well-formed, Self-replicating Programs Emerge from Simple Interaction". arXiv:2406.19108 [cs.NE].

See also

[edit]

Notes

[edit]
  1. ^ Alternatively, the ] command may instead be translated as an unconditional jump to the corresponding [ command, or vice versa; programs will behave the same but will run more slowly, due to unnecessary double searching.

References

[edit]
  1. ^ Easter, Brandee (2020-04-02). "Fully Human, Fully Machine: Rhetorics of Digital Disembodiment in Programming". Rhetoric Review. 39 (2): 202–215. doi:10.1080/07350198.2020.1727096. ISSN 0735-0198. S2CID 219665562.
  • ^ Temkin, Daniel (2017-09-01). "Language without code: intentionally unusable, uncomputable, or conceptual programming languages". Journal of Science and Technology of the Arts. 9 (3): 83–91. doi:10.7559/citarj.v9i3.432. ISSN 2183-0088. Archived from the original on 2024-07-09. Retrieved 2024-02-11.
  • ^ Haupt, Michael. "Implementing Brainfuck in COLA."
  • ^ Cox, Geoff, and Alex McLean. "Not Just for Fun." Bloomsbury Academic, 2014. 157-173.
  • ^ "brainfuck - Esolang". esolangs.org. Archived from the original on 2018-10-23. Retrieved 2024-02-07.
  • ^ "The Brainfuck Programming Language". Muppetlabs.com. Archived from the original on 2023-05-03. Retrieved 2023-04-30.
  • ^ "The FALSE Programming Language — Wouter van Oortmerssen". Strlen.com. 2013-08-03. Archived from the original on 2023-04-30. Retrieved 2023-04-30.
  • ^ "Aminet - dev/lang/brainfuck-2.lha". Aminet. Archived from the original on 2023-04-30. Retrieved 2023-04-30.
  • ^ "BF is Turing-complete". Iwriteiam.nl. Archived from the original on 2023-05-23. Retrieved 2023-04-30.
  • ^ "Index of /esoteric/brainfuck/bf-source/prog". sange.fi. 2002-01-22. Archived from the original on 2023-04-30. Retrieved 2023-04-30.
  • ^ "BF interpreter written in BF". Iwriteiam.nl. Retrieved 2023-04-30.
  • ^ "brainfuck interpreter". Daniel B. Cristofani.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Brainfuck&oldid=1235460695"

    Categories: 
    Non-English-based programming languages
    Esoteric programming languages
    Programming languages created in 1993
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles lacking reliable references from April 2023
    All articles lacking reliable references
    Articles needing additional references from April 2023
    All articles needing additional references
    Articles with multiple maintenance issues
     



    This page was last edited on 19 July 2024, at 11:19 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki