Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement  





2 Application  





3 Related statements  





4 See also  





5 References  





6 External links  














BregmanMinc inequality







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Indiscrete mathematics, the Bregman–Minc inequality, or Bregman's theorem, allows one to estimate the permanent of a binary matrix via its row or column sums. The inequality was conjectured in 1963 by Henryk Minc and first proved in 1973 by Lev M. Bregman.[1][2] Further entropy-based proofs have been given by Alexander Schrijver and Jaikumar Radhakrishnan.[3][4] The Bregman–Minc inequality is used, for example, in graph theory to obtain upper bounds for the number of perfect matchings in a bipartite graph.

Statement[edit]

The permanent of a square binary matrix of size with row sums for can be estimated by

The permanent is therefore bounded by the product of the geometric means of the numbers from to for . Equality holds if the matrix is a block diagonal matrix consisting of matrices of ones or results from row and/or column permutations of such a block diagonal matrix. Since the permanent is invariant under transposition, the inequality also holds for the column sums of the matrix accordingly.[5][6]

Application[edit]

A binary matrix and the corresponding bipartite graph with a possible perfect matching marked in red. According to the Bregman–Minc inequality, there are at most 18 perfect matchings in this graph.

There is a one-to-one correspondence between a square binary matrix of size and a simple bipartite graph with equal-sized partitions and by taking

This way, each nonzero entry of the matrix defines an edge in the graph and vice versa. A perfect matching in is a selection of edges, such that each vertex of the graph is an endpoint of one of these edges. Each nonzero summand of the permanent of satisfying

corresponds to a perfect matching of. Therefore, if denotes the set of perfect matchings of ,

holds. The Bregman–Minc inequality now yields the estimate

where is the degree of the vertex . Due to symmetry, the corresponding estimate also holds for instead of . The number of possible perfect matchings in a bipartite graph with equal-sized partitions can therefore be estimated via the degrees of the vertices of any of the two partitions.[7]

Related statements[edit]

Using the inequality of arithmetic and geometric means, the Bregman–Minc inequality directly implies the weaker estimate

which was proven by Henryk Minc already in 1963. Another direct consequence of the Bregman–Minc inequality is a proof of the following conjecture of Herbert Ryser from 1960. Let by a divisor of and let denote the set of square binary matrices of size with row and column sums equal to , then

The maximum is thereby attained for a block diagonal matrix whose diagonal blocks are square matrices of ones of size . A corresponding statement for the case that is not a divisor of is an open mathematical problem.[5][6]

See also[edit]

References[edit]

  1. ^ Henryk Minc (1963), "Upper bounds for permanents of (0,1)-matrices", Bull. Amer. Math. Soc., 69: 789–791, doi:10.1090/s0002-9904-1963-11031-9
  • ^ Lev Bregman (1973), "Some properties of nonnegative matrices and their permanents", Soviet Math. Dokl., 14: 945–949
  • ^ Alexander Schrijver (1978), "A short proof of Minc's conjecture", J. Combin. Theory Ser. A, 25: 80–83, doi:10.1016/0097-3165(78)90036-5
  • ^ Jaikumar Radhakrishnan (1997), "An entropy proof of Bregman's theorem", J. Combin. Theory Ser. A, 77: 161–164, doi:10.1006/jcta.1996.2727
  • ^ a b Henryk Minc (1984), Permanents, Encyclopedia of Mathematics and its Applications, vol. 6, Cambridge University Press, pp. 107–109
  • ^ a b Vladimir Sachkov (1996), Combinatorial Methods in Discrete Mathematics, Cambridge University Press, pp. 95–97
  • ^ Martin Aigner, Günter M. Ziegler (2015), Das Buch der Beweise (4. ed.), Springer, pp. 285–292
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Bregman–Minc_inequality&oldid=1136314512"

    Category: 
    Theorems in discrete mathematics
     



    This page was last edited on 29 January 2023, at 19:31 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki