Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement of the conjecture  





2 Progress  





3 Function field analogue  





4 References  














BrumerStark conjecture






Français
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Brumer–Stark conjecture is a conjectureinalgebraic number theory giving a rough generalization of both the analytic class number formula for Dedekind zeta functions, and also of Stickelberger's theorem about the factorizationofGauss sums. It is named after Armand Brumer and Harold Stark.

It arises as a special case (abelian and first-order) of Stark's conjecture, when the place that splits completely in the extension is finite. There are very few cases where the conjecture is known to be valid. Its importance arises, for instance, from its connection with Hilbert's twelfth problem.

Statement of the conjecture[edit]

Let K/k be an abelian extensionofglobal fields, and let S be a set of places of k containing the Archimedean places and the prime ideals that ramifyinK/k. The S-imprimitive equivariant Artin L-function θ(s) is obtained from the usual equivariant Artin L-function by removing the Euler factors corresponding to the primes in S from the Artin L-functions from which the equivariant function is built. It is a function on the complex numbers taking values in the complex group ring C[G] where G is the Galois groupofK/k. It is analytic on the entire plane, excepting a lone simple pole at s = 1.

Let μK be the group of roots of unityinK. The group G acts on μK; let A be the annihilatorofμK as a Z[G]-module. An important theorem, first proved by C. L. Siegel and later independently by Takuro Shintani, states that θ(0) is actually in Q[G]. A deeper theorem, proved independently by Pierre Deligne and Ken Ribet, Daniel Barsky, and Pierrette Cassou-Noguès, states that (0) is in Z[G]. In particular, (0) is in Z[G], where W is the cardinality of μK.

The ideal class groupofK is a G-module. From the above discussion, we can let (0) act on it. The Brumer–Stark conjecture says the following:[1]

Brumer–Stark Conjecture. For each nonzero fractional ideal ofK, there is an "anti-unit" ε such that

  1. The extension is abelian.

The first part of this conjecture is due to Armand Brumer, and Harold Stark originally suggested that the second condition might hold. The conjecture was first stated in published form by John Tate.[2]

The term "anti-unit" refers to the condition that |ε|ν is required to be 1 for each Archimedean place ν.[1]

Progress[edit]

The Brumer Stark conjecture is known to be true for extensions K/k where

In 2020,[5] Dasgupta and Kakde proved the Brumer–Stark conjecture away from the prime 2.[6] In 2023, a full proof of the conjecture has been announced.[7]

Function field analogue[edit]

The analogous statement in the function field case is known to be true, having been proved by John Tate and Pierre Deligne in 1984,[8] with a different proof by David Hayes in 1985.[9][10]

References[edit]

  1. ^ a b c Lemmermeyer, Franz (2000). Reciprocity laws. From Euler to Eisenstein. Springer Monographs in Mathematics. Berlin: Springer-Verlag. p. 384. ISBN 3-540-66957-4. MR 1761696. Zbl 0949.11002.
  • ^ a b Tate, John, Brumer–Stark–Stickelberger, Séminaire de Théorie des Nombres, Univ. Bordeaux I Talence, (1980-81), exposé no. 24.
  • ^ Tate, John, "Les Conjectures de Stark sur les Fonctions L d'Artin en s=0", Progress in Mathematics, 47, Birkhauser, MR 0782485
  • ^ Sands, J. W. (1984), "Galois groups of exponent 2 and the Brumer–Stark conjecture", J. Reine Angew. Math., 349 (1): 129–135, doi:10.1515/crll.1984.349.129, S2CID 116102479
  • ^ arXiv:2010.00657
  • ^ Dasgupta, Samit; Kakde, Mahesh (2023). "On the Brumer-Stark Conjecture and Refinements". Annals of Mathematics. 197 (1): 289–388.
  • ^ arXiv:2310.16399
  • ^ Tate, John (1984). Les conjectures de Stark sur les fonctions L d'Artin en s = 0. Progress in Mathematics. Vol. 47. Boston, MA: Birkhäuser.
  • ^ Hayes, David R. (1985). "Stickelberger elements in function fields". Compositio Mathematica. 55 (2): 209–239.
  • ^ Rosen, Michael (2002), "15. The Brumer-Stark conjecture", Number theory in function fields, Graduate Texts in Mathematics, vol. 210, New York, NY: Springer-Verlag, ISBN 0-387-95335-3, Zbl 1043.11079

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Brumer–Stark_conjecture&oldid=1215065541"

    Categories: 
    Conjectures
    Unsolved problems in number theory
    Algebraic number theory
    Zeta and L-functions
     



    This page was last edited on 22 March 2024, at 22:13 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki