Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 Action  



2.1  Black hole  







3 See also  





4 References  














CGHS model






Français
Português
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Callan–Giddings–Harvey–Strominger modelorCGHS model[1] in short is a toy modelofgeneral relativity in 1 spatial and 1 time dimension.

Overview[edit]

General relativity is a highly nonlinear model, and as such, its 3+1D version is usually too complicated to analyze in detail. In 3+1D and higher, propagating gravitational waves exist, but not in 2+1D or 1+1D. In 2+1D, general relativity becomes a topological field theory with no local degrees of freedom, and all 1+1D models are locally flat. However, a slightly more complicated generalization of general relativity which includes dilatons will turn the 2+1D model into one admitting mixed propagating dilaton-gravity waves, as well as making the 1+1D model geometrically nontrivial locally.[2][3] The 1+1D model still does not admit any propagating gravitational (or dilaton) degrees of freedom, but with the addition of matter fields, it becomes a simplified, but still nontrivial model. With other numbers of dimensions, a dilaton-gravity coupling can always be rescaled away by a conformal rescaling of the metric, converting the Jordan frame to the Einstein frame. But not in two dimensions, because the conformal weight of the dilaton is now 0. The metric in this case is more amenable to analytical solutions than the general 3+1D case. And of course, 0+1D models cannot capture any nontrivial aspect of relativity because there is no space at all.

This class of models retains just enough complexity to include among its solutions black holes, their formation, FRW cosmological models, gravitational singularities, etc. In the quantized version of such models with matter fields, Hawking radiation also shows up, just as in higher-dimensional models.

Action[edit]

A very specific choice of couplings and interactions leads to the CGHS model.

where g is the metric tensor, is the dilaton field, fi are the matter fields, and λ2 is the cosmological constant. In particular, the cosmological constant is nonzero, and the matter fields are massless real scalars.

This specific choice is classically integrable, but still not amenable to an exact quantum solution. It is also the action for Non-critical string theory and dimensional reduction of higher-dimensional model. It also distinguishes it from Jackiw–Teitelboim gravity and Liouville gravity, which are entirely different models.

The matter field only couples to the causal structure, and in the light-cone gauge ds2 = − e du,dv, has the simple generic form

,

with a factorization between left- and right-movers.

The Raychaudhuri equations are

and
.

The dilaton evolves according to

,

while the metric evolves according to

.

The conformal anomaly due to matter induces a Liouville term in the effective action.

Black hole[edit]

A vacuum black hole solution is given by

,

where M is the ADM mass. Singularities appear at uv = λ−3M.

The masslessness of the matter fields allow a black hole to completely evaporate away via Hawking radiation. In fact, this model was originally studied to shed light upon the black hole information paradox.

See also[edit]

References[edit]

  1. ^ Callan, Curtis; Giddings, Steven; Harvey, Jeffrey; Strominger, Andrew (1992). "Evanescent black holes". Physical Review D. 45 (4): 1005–1009. arXiv:hep-th/9111056. Bibcode:1992PhRvD..45.1005C. doi:10.1103/PhysRevD.45.R1005. PMID 10014472. S2CID 5840401.
  • ^ Grumiller, Daniel; Kummer, Wolfgang; Vassilevich, Dmitri (October 2002). "Dilaton Gravity in Two Dimensions". Physics Reports. 369 (4): 327–430. arXiv:hep-th/0204253. Bibcode:2002PhR...369..327G. doi:10.1016/S0370-1573(02)00267-3. S2CID 119497628.
  • ^ Grumiller, Daniel; Meyer, Rene (2006). "Ramifications of Lineland". Turkish Journal of Physics. 30 (5): 349–378. arXiv:hep-th/0604049. Bibcode:2006TJPh...30..349G. Archived from the original on 2011-08-22.
  • t
  • e

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=CGHS_model&oldid=1225030093"

    Categories: 
    Quantum gravity
    General relativity
    Relativity stubs
    Hidden category: 
    All stub articles
     



    This page was last edited on 21 May 2024, at 22:34 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki