Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Synthesis  





2 Applications  



2.1  Optics  





2.2  Radiation detection  







3 See also  





4 References  














CR-39






Deutsch
Italiano
Português
Русский
Türkçe
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Poly(allyl diglycol carbonate)


Polymer structure

Names

Other names

2,5,8,10-Tetraoxatridec-12-enoic acid, 9-oxo-, 2-propen-1-yl ester, homopolymer

Identifiers

CAS Number

Abbreviations

PADC

Properties

Density

1.31

Refractive index (nD)

1.498

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Infobox references

Diallyl diglycol carbonate


Monomer structure

Names

IUPAC name

2-(2-prop-2-enoxycarbonyloxyethoxy)ethyl prop-2-enyl carbonate

Other names

allyl diglycol carbonate (ADC); diethyleneglycol bis allylcarbonate

Identifiers

CAS Number

  • 95567-48-9 "ADC", deprecated
  • PubChem CID

    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    Infobox references

    A piece of CR-39 manufactured for radiation detection

    Poly(allyl diglycol carbonate) (PADC) is a plastic commonly used in the manufacture of eyeglass lenses alongside the material PMMA (polymethyl methacrylate). The monomer is allyl diglycol carbonate (ADC). The term CR-39 technically refers to the ADC monomer, but is more commonly used to refer to the finished plastic.

    The abbreviation stands for "Columbia Resin #39", which was the 39th formula of a thermosetting plastic developed by the Columbia Resins project in 1940.[1]

    The first commercial use of CR-39 monomer (ADC) was to help create glass-reinforced plastic fuel tanks for the B-17 bomber aircraft in World War II, reducing the weight and increasing the range of the bomber. After the war, the Armorlite Lens Company in California is credited with manufacturing the first CR-39 eyeglass lenses in 1947. CR-39 plastic has an index of refraction of 1.498 and an Abbe number of 58. CR-39 is now a trade-marked product of PPG Industries.[2]

    An alternative use includes a purified version that is used to measure neutron radiation, a type of ionizing radiation, in neutron dosimetry.

    Although CR-39 is a type of polycarbonate, it should not be confused with the general term "polycarbonate", a tough homopolymer usually made from bisphenol A.[3]

    Synthesis[edit]

    CR-39 is made by polymerization of ADC in presence of diisopropyl peroxydicarbonate (IPP) initiator. The presence of the allyl groups allows the polymer to form cross-links; thus, it is a thermoset resin. The polymerization schedule of ADC monomers using IPP is generally 20 hours long with a maximum temperature of 95 °C. The elevated temperatures can be supplied using a water bath or a forced air oven.

    Benzoyl peroxide (BPO) is an alternative organic peroxide that may be used to polymerize ADC. Pure benzoyl peroxide is crystalline and less volatile than diisopropyl peroxydicarbonate. Using BPO results in a polymer that has a higher yellowness index, and the peroxide takes longer to dissolve into ADC at room temperature than IPP.

    Applications[edit]

    Optics[edit]

    CR-39 is transparent in the visible spectrum and is almost completely opaque in the ultraviolet range.[4] It has high abrasion resistance, in fact the highest abrasion/scratch resistance of any uncoated optical plastic. CR-39 is about half the weight of glass with an index of refraction only slightly lower than that of crown glass, and its high Abbe number yields low chromatic aberration, altogether making it an advantageous material for eyeglasses and sunglasses. A wide range of colors can be achieved by dyeing of the surface or the bulk of the material. CR-39 is also resistant to most solvents and other chemicals, gamma radiation, aging, and to material fatigue. It can withstand the small hot sparks from welding, something glass cannot do. It can be used continuously in temperatures up to 100 °C and up to one hour at 130 °C.[citation needed]

    Radiation detection[edit]

    Microscopic image of deuteron tracks in CR-39

    In the radiation detection application, CR-39 is used as a solid-state nuclear track detector (SSNTD) to detect the presence of ionising radiation. Energetic particles colliding with the polymer structure leave a trail of broken chemical bonds within the CR-39. When immersed in a concentrated alkali solution (typically sodium hydroxide) hydroxide ions attack and break the polymer structure, etching away the bulk of the plastic at a nominally fixed rate. However, along the paths of damage left by charged particle interaction the concentration of radiation damage allows the chemical agent to attack the polymer more rapidly than it does in the bulk, revealing the paths of the charged particle ion tracks. The resulting etched plastic therefore contains a permanent record of not only the location of the radiation on the plastic but also gives spectroscopic information about the source. Principally used for the detection of alpha radiation emitting radionuclides (especially radon gas), the radiation-sensitivity properties of CR-39 are also used for proton and neutron dosimetry and historically cosmic ray investigations.

    The ability of CR-39 to record the location of a radiation source, even at extremely low concentrations is exploited in autoradiography studies with alpha particles,[5] and for (comparatively cheap) detection of alpha-emitters like uranium.[6] Typically, a thin section of a biological material is fixed against CR-39 and kept frozen for a timescale of months to years in an environment that is shielded as much as possible from possible radiological contaminants. Before etching, photographs are taken of the biological sample with the affixed CR-39 detector, with care taken to ensure that prescribed location marks on the detector are noted. After the etching process, automated or manual 'scanning' of the CR-39 is used to physically locate the ionising radiation recorded, which can then be mapped to the position of the radionuclide within the biological sample. There is no other non-destructive method for accurately identifying the location of trace quantities of radionuclides in biological samples at such low emission levels.

    See also[edit]

    References[edit]

    1. ^ "Optical Products". Corporateportal.ppg.com. Archived from the original on 2009-06-13. Retrieved 2012-09-15.
  • ^ "Optical Products". Corporateportal.ppg.com. Archived from the original on 2006-04-19. Retrieved 2012-09-15.
  • ^ "A Field study" (PDF). Dtic.mil. Archived (PDF) from the original on October 2, 2012. Retrieved 2012-09-16.
  • ^ "OptiCampus.com - Spectral Transmittance Charts". opticampus.opti.vision. Retrieved 2019-03-09.
  • ^ A quantitative method for determining the biodistribution of alpha radionuclides using whole-body cryosectioning and alpha-track autoradiography Archived 2013-10-14 at the Wayback Machine Cebrián, D., Morcillo, M.A.; Radiation Dosimetry, CIEMAT Avd. Complutense 22; 28040-Madrid Spain.
  • ^ Busby Busby Chris and Williams Dai, Further Evidence of Enriched Uranium in guided weapons employed by the Israeli Military in Lebanon in July 2006: Ambulance Air Filter Analysis Archived 2012-12-24 at the Wayback Machine Green Audit Research Note 7/2006 Nov 3rd 2006.
  • People

  • John Baptiste Ford
  • John Pitcairn Jr.
  • PPG logo

    Products

  • CR-39
  • Dimetcote
  • Duco
  • Ripolin
  • Teslin
  • Subsidiaries

  • Comex Group
  • Electronics for Medicine
  • Glidden
  • Transitions Optical (Joint Venture)
  • Buildings

  • PPG Company Building
  • PPG Enamel Plant
  • PPG Place
  • Sponsorships

  • PPG World Series
  • Related


    Retrieved from "https://en.wikipedia.org/w/index.php?title=CR-39&oldid=1216032439"

    Categories: 
    Plastics
    Polycarbonates
    Optical materials
    Particle detectors
    PPG Industries
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description is different from Wikidata
    Chemicals without a PubChem CID
    Articles without InChI source
    Chemical pages without ChemSpiderID
    Articles without EBI source
    Articles without KEGG source
    Articles without UNII source
    Articles containing unverified chemical infoboxes
    Short description matches Wikidata
    Chemical articles with multiple compound IDs
    Multiple chemicals in an infobox that need indexing
    Chemical articles with multiple CAS registry numbers
    All articles with unsourced statements
    Articles with unsourced statements from December 2018
     



    This page was last edited on 28 March 2024, at 16:50 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki