Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 List of isotopes  





2 Caesium-131  





3 Caesium-133  





4 Caesium-134  





5 Caesium-135  





6 Caesium-136  





7 Caesium-137  





8 Other isotopes of caesium  





9 References  














Isotopes of caesium






العربية
Català
Чӑвашла
Čeština
Español
Esperanto
فارسی
Français

Bahasa Indonesia
Italiano
Magyar
Nederlands

Русский


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Caesium-133)

Isotopesofcaesium (55Cs)

Main isotopes[1]

Decay

abun­dance

half-life (t1/2)

mode

pro­duct

131Cs

synth

9.7 d

ε

131Xe

133Cs

100%

stable

134Cs

synth

2.0648 y

ε

134Xe

β

134Ba

135Cs

trace

1.33×106 y

β

135Ba

137Cs

synth

30.17 y[2]

β

137Ba

Standard atomic weight Ar°(Cs)

  • 132.90545196±0.00000006[3]
  • 132.91±0.01 (abridged)[4]
  • talk
  • edit
  • Caesium (55Cs) has 41 known isotopes, the atomic masses of these isotopes range from 112 to 152. Only one isotope, 133Cs, is stable. The longest-lived radioisotopes are 135Cs with a half-life of 1.33 million years, 137
    Cs
    with a half-life of 30.1671 years and 134Cs with a half-life of 2.0652 years. All other isotopes have half-lives less than 2 weeks, most under an hour.

    Beginning in 1945 with the commencement of nuclear testing, caesium radioisotopes were released into the atmosphere where caesium is absorbed readily into solution and is returned to the surface of the Earth as a component of radioactive fallout. Once caesium enters the ground water, it is deposited on soil surfaces and removed from the landscape primarily by particle transport. As a result, the input function of these isotopes can be estimated as a function of time.

    List of isotopes[edit]

    Nuclide
    [n 1]

    Z

    N

    Isotopic mass (Da)
    [n 2][n 3]

    Half-life

    Decay
    mode

    [n 4]

    Daughter
    isotope

    [n 5][n 6]

    Spin and
    parity
    [n 7][n 8]

    Isotopic
    abundance

    Excitation energy[n 8]

    112Cs

    55

    57

    111.95030(33)#

    500(100) μs

    p

    111Xe

    1+#

    α

    108I

    113Cs

    55

    58

    112.94449(11)

    16.7(7) μs

    p (99.97%)

    112Xe

    5/2+#

    β+ (.03%)

    113Xe

    114Cs

    55

    59

    113.94145(33)#

    0.57(2s

    β+ (91.09%)

    114Xe

    (1+)

    β+, p (8.69%)

    113I

    β+, α (.19%)

    110Te

    α (.018%)

    110I

    115Cs

    55

    60

    114.93591(32)#

    1.4(8s

    β+ (99.93%)

    115Xe

    9/2+#

    β+, p (.07%)

    114I

    116Cs

    55

    61

    115.93337(11)#

    0.70(4s

    β+ (99.67%)

    116Xe

    (1+)

    β+, p (.279%)

    115I

    β+, α (.049%)

    112Te

    116mCs

    100(60)# keV

    3.85(13s

    β+ (99.48%)

    116Xe

    4+, 5, 6

    β+, p (.51%)

    115I

    β+, α (.008%)

    112Te

    117Cs

    55

    62

    116.92867(7)

    8.4(6s

    β+

    117Xe

    (9/2+)#

    117mCs

    150(80)# keV

    6.5(4s

    β+

    117Xe

    3/2+#

    118Cs

    55

    63

    117.926559(14)

    14(2s

    β+ (99.95%)

    118Xe

    2

    β+, p (.042%)

    117I

    β+, α (.0024%)

    114Te

    118mCs

    100(60)# keV

    17(3s

    β+ (99.95%)

    118Xe

    (7−)

    β+, p (.042%)

    117I

    β+, α (.0024%)

    114Te

    119Cs

    55

    64

    118.922377(15)

    43.0(2s

    β+

    119Xe

    9/2+

    β+, α (2×10−6%)

    115Te

    119mCs

    50(30)# keV

    30.4(1s

    β+

    119Xe

    3/2(+)

    120Cs

    55

    65

    119.920677(11)

    61.2(18s

    β+

    120Xe

    2(−#)

    β+, α (2×10−5%)

    116Te

    β+, p (7×10−6%)

    119I

    120mCs

    100(60)# keV

    57(6s

    β+

    120Xe

    (7−)

    β+, α (2×10−5%)

    116Te

    β+, p (7×10−6%)

    119I

    121Cs

    55

    66

    120.917229(15)

    155(4s

    β+

    121Xe

    3/2(+)

    121mCs

    68.5(3) keV

    122(3s

    β+ (83%)

    121Xe

    9/2(+)

    IT (17%)

    121Cs

    122Cs

    55

    67

    121.91611(3)

    21.18(19s

    β+

    122Xe

    1+

    β+, α (2×10−7%)

    118Te

    122m1Cs

    45.8 keV

    >1 μs

    (3)+

    122m2Cs

    140(30) keV

    3.70(11) min

    β+

    122Xe

    8−

    122m3Cs

    127.0(5) keV

    360(20ms

    (5)−

    123Cs

    55

    68

    122.912996(13)

    5.88(3) min

    β+

    123Xe

    1/2+

    123m1Cs

    156.27(5) keV

    1.64(12s

    IT

    123Cs

    (11/2)−

    123m2Cs

    231.63+X keV

    114(5ns

    (9/2+)

    124Cs

    55

    69

    123.912258(9)

    30.9(4s

    β+

    124Xe

    1+

    124mCs

    462.55(17) keV

    6.3(2s

    IT

    124Cs

    (7)+

    125Cs

    55

    70

    124.909728(8)

    46.7(1) min

    β+

    125Xe

    1/2(+)

    125mCs

    266.6(11) keV

    900(30ms

    (11/2−)

    126Cs

    55

    71

    125.909452(13)

    1.64(2) min

    β+

    126Xe

    1+

    126m1Cs

    273.0(7) keV

    >1 μs

    126m2Cs

    596.1(11) keV

    171(14) μs

    127Cs

    55

    72

    126.907418(6)

    6.25(10h

    β+

    127Xe

    1/2+

    127mCs

    452.23(21) keV

    55(3) μs

    (11/2)−

    128Cs

    55

    73

    127.907749(6)

    3.640(14) min

    β+

    128Xe

    1+

    129Cs

    55

    74

    128.906064(5)

    32.06(6h

    β+

    129Xe

    1/2+

    130Cs

    55

    75

    129.906709(9)

    29.21(4) min

    β+ (98.4%)

    130Xe

    1+

    β (1.6%)

    130Ba

    130mCs

    163.25(11) keV

    3.46(6) min

    IT (99.83%)

    130Cs

    5−

    β+ (.16%)

    130Xe

    131Cs

    55

    76

    130.905464(5)

    9.689(16d

    EC

    131Xe

    5/2+

    132Cs

    55

    77

    131.9064343(20)

    6.480(6d

    β+ (98.13%)

    132Xe

    2+

    β (1.87%)

    132Ba

    133Cs[n 9][n 10]

    55

    78

    132.905451933(24)

    Stable

    7/2+

    1.0000

    134Cs[n 10]

    55

    79

    133.906718475(28)

    2.0652(4y

    β

    134Ba

    4+

    EC (3×10−4%)

    134Xe

    134mCs

    138.7441(26) keV

    2.912(2h

    IT

    134Cs

    8−

    135Cs[n 10]

    55

    80

    134.9059770(11)

    2.3 x106 y

    β

    135Ba

    7/2+

    135mCs

    1632.9(15) keV

    53(2) min

    IT

    135Cs

    19/2−

    136Cs

    55

    81

    135.9073116(20)

    13.16(3d

    β

    136Ba

    5+

    136mCs

    518(5) keV

    19(2s

    β

    136Ba

    8−

    IT

    136Cs

    137Cs[n 10]

    55

    82

    136.9070895(5)

    30.1671(13y

    β (95%)

    137mBa

    7/2+

    β (5%)

    137Ba

    138Cs

    55

    83

    137.911017(10)

    33.41(18) min

    β

    138Ba

    3−

    138mCs

    79.9(3) keV

    2.91(8) min

    IT (81%)

    138Cs

    6−

    β (19%)

    138Ba

    139Cs

    55

    84

    138.913364(3)

    9.27(5) min

    β

    139Ba

    7/2+

    140Cs

    55

    85

    139.917282(9)

    63.7(3s

    β

    140Ba

    1−

    141Cs

    55

    86

    140.920046(11)

    24.84(16s

    β (99.96%)

    141Ba

    7/2+

    β, n (.0349%)

    140Ba

    142Cs

    55

    87

    141.924299(11)

    1.689(11s

    β (99.9%)

    142Ba

    0−

    β, n (.091%)

    141Ba

    143Cs

    55

    88

    142.927352(25)

    1.791(7s

    β (98.38%)

    143Ba

    3/2+

    β, n (1.62%)

    142Ba

    144Cs

    55

    89

    143.932077(28)

    994(4ms

    β (96.8%)

    144Ba

    1(−#)

    β, n (3.2%)

    143Ba

    144mCs

    300(200)# keV

    <1 s

    β

    144Ba

    (>3)

    IT

    144Cs

    145Cs

    55

    90

    144.935526(12)

    582(6ms

    β (85.7%)

    145Ba

    3/2+

    β, n (14.3%)

    144Ba

    146Cs

    55

    91

    145.94029(8)

    0.321(2s

    β (85.8%)

    146Ba

    1−

    β, n (14.2%)

    145Ba

    147Cs

    55

    92

    146.94416(6)

    0.235(3s

    β (71.5%)

    147Ba

    (3/2+)

    β, n (28.49%)

    146Ba

    148Cs

    55

    93

    147.94922(62)

    146(6ms

    β (74.9%)

    148Ba

    β, n (25.1%)

    147Ba

    149Cs

    55

    94

    148.95293(21)#

    150# ms [>50 ms]

    β

    149Ba

    3/2+#

    β, n

    148Ba

    150Cs

    55

    95

    149.95817(32)#

    100# ms [>50 ms]

    β

    150Ba

    β, n

    149Ba

    151Cs

    55

    96

    150.96219(54)#

    60# ms [>50 ms]

    β

    151Ba

    3/2+#

    β, n

    150Ba

    This table header & footer:
    1. ^ mCs – Excited nuclear isomer.
  • ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  • ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  • ^ Modes of decay:

    IT:

    Isomeric transition

    n:

    Neutron emission

    p:

    Proton emission

  • ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  • ^ Bold symbol as daughter – Daughter product is stable.
  • ^ ( ) spin value – Indicates spin with weak assignment arguments.
  • ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  • ^ Used to define the second
  • ^ a b c d Fission product
  • Caesium-131[edit]

    Caesium-131, introduced in 2004 for brachytherapybyIsoray,[5] has a half-life of 9.7 days and 30.4 keV energy.

    Caesium-133[edit]

    Caesium-133 is the only stable isotope of caesium. The SI base unit of time, the second, is defined by a specific caesium-133 transition. Since 1967, the official definition of a second is:

    The second, symbol s, is defined by taking the fixed numerical value of the caesium frequency, ΔνCs, the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom,[6] to be 9192631770 when expressed in the unit Hz, which is equal to s−1.

    Caesium-134[edit]

    Caesium-134 has a half-life of 2.0652 years. It is produced both directly (at a very small yield because 134Xe is stable) as a fission product and via neutron capture from nonradioactive 133Cs (neutron capture cross section29barns), which is a common fission product. Caesium-134 is not produced via beta decay of other fission product nuclides of mass 134 since beta decay stops at stable 134Xe. It is also not produced by nuclear weapons because 133Cs is created by beta decay of original fission products only long after the nuclear explosion is over.

    The combined yield of 133Cs and 134Cs is given as 6.7896%. The proportion between the two will change with continued neutron irradiation. 134Cs also captures neutrons with a cross section of 140 barns, becoming long-lived radioactive 135Cs.

    Caesium-134 undergoes beta decay), producing 134Ba directly and emitting on average 2.23 gamma ray photons (mean energy 0.698 MeV).[7]

    Caesium-135[edit]

  • e
  • Nuclide

    t12

    Yield

    Q[a 1]

    βγ

    (Ma)

    (%)[a 2]

    (keV)

    99Tc

    0.211

    6.1385

    294

    β

    126Sn

    0.230

    0.1084

    4050[a 3]

    βγ

    79Se

    0.327

    0.0447

    151

    β

    135Cs

    1.33

    6.9110[a 4]

    269

    β

    93Zr

    1.53

    5.4575

    91

    βγ

    107Pd

    6.5  

    1.2499

    33

    β

    129I

    15.7  

    0.8410

    194

    βγ

    1. ^ Decay energy is split among β, neutrino, and γ if any.
  • ^ Per 65 thermal neutron fissions of 235U and 35 of 239Pu.
  • ^ Has decay energy 380 keV, but its decay product 126Sb has decay energy 3.67 MeV.
  • ^ Lower in thermal reactors because 135Xe, its predecessor, readily absorbs neutrons.
  • Caesium-135 is a mildly radioactive isotope of caesium with a half-life of 2.3 million years. It decays via emission of a low-energy beta particle into the stable isotope barium-135. Caesium-135 is one of the seven long-lived fission products and the only alkaline one. In most types of nuclear reprocessing, it stays with the medium-lived fission products (including 137
    Cs
    which can only be separated from Cs-135 via isotope separation) rather than with other long-lived fission products. Except in the Molten salt reactor, where Cs-135 is created as a completely separate stream outside the fuel (after the decay of bubble-separated Xe-135). The low decay energy, lack of gamma radiation, and long half-life of 135Cs make this isotope much less hazardous than 137Csor134Cs.

    Its precursor 135Xe has a high fission product yield (e.g. 6.3333% for 235U and thermal neutrons) but also has the highest known thermal neutron capture cross section of any nuclide. Because of this, much of the 135Xe produced in current thermal reactors (as much as >90% at steady-state full power)[8] will be converted to extremely long-lived (half-life on the order of 1021 years) 136
    Xe
    before it can decay to 135
    Cs
    despite the relatively short half life of 135
    Xe
    . Little or no 135
    Xe
    will be destroyed by neutron capture after a reactor shutdown, or in a molten salt reactor that continuously removes xenon from its fuel, a fast neutron reactor, or a nuclear weapon. The xenon pit is a phenomenon of excess neutron absorption through 135
    Xe
    buildup in the reactor after a reduction in power or a shutdown and is often managed by letting the 135
    Xe
    decay away to a level at which neutron flux can be safely controlled via control rods again.

    A nuclear reactor will also produce much smaller amounts of 135Cs from the nonradioactive fission product 133Cs by successive neutron capture to 134Cs and then 135Cs.

    The thermal neutron capture cross section and resonance integralof135Cs are 8.3 ± 0.3 and 38.1 ± 2.6 barns respectively.[9] Disposal of 135Cs by nuclear transmutation is difficult, because of the low cross section as well as because neutron irradiation of mixed-isotope fission caesium produces more 135Cs from stable 133Cs. In addition, the intense medium-term radioactivity of 137Cs makes handling of nuclear waste difficult.[10]

    Caesium-136[edit]

    This section does not cite any sources. Please help improve this sectionbyadding citations to reliable sources. Unsourced material may be challenged and removed. (July 2024) (Learn how and when to remove this message)

    Caesium-136 has a half-life of 13.16 days. It is produced both directly (at a very small yield because 136Xe is beta-stable) as a fission product and via neutron capture from long-lived 135Cs (neutron capture cross section 8.702 barns), which is a common fission product. Caesium-136 is not produced via beta decay of other fission product nuclides of mass 136 since beta decay stops at almost-stable 136Xe. It is also not produced by nuclear weapons because 135Cs is created by beta decay of original fission products only long after the nuclear explosion is over. 136Cs also captures neutrons with a cross section of 13.00 barns, becoming medium-lived radioactive 137Cs. Caesium-136 undergoes beta decay (β−), producing 136Ba directly.

    Caesium-137[edit]

    Caesium-137, with a half-life of 30.17 years, is one of the two principal medium-lived fission products, along with 90Sr, which are responsible for most of the radioactivityofspent nuclear fuel after several years of cooling, up to several hundred years after use. It constitutes most of the radioactivity still left from the Chernobyl accident and is a major health concern for decontaminating land near the Fukushima nuclear power plant.[11] 137Cs beta decays to barium-137m (a short-lived nuclear isomer) then to nonradioactive barium-137. Caesium-137 does not emit gamma radiation directly, all observed radiation is due to the daughter isotope barium-137m.

    137Cs has a very low rate of neutron capture and cannot yet be feasibly disposed of in this way unless advances in neutron beam collimation (not otherwise achievable by magnetic fields), uniquely available only from within muon catalyzed fusion experiments (not in the other forms of Accelerator Transmutation of Nuclear Waste) enables production of neutrons at high enough intensity to offset and overcome these low capture rates; until then, therefore, 137Cs must simply be allowed to decay.

    137Cs has been used as a tracer in hydrologic studies, analogous to the use of 3H.

    Other isotopes of caesium[edit]

    The other isotopes have half-lives from a few days to fractions of a second. Almost all caesium produced from nuclear fission comes from beta decay of originally more neutron-rich fission products, passing through isotopes of iodine then isotopes of xenon. Because these elements are volatile and can diffuse through nuclear fuel or air, caesium is often created far from the original site of fission.

    References[edit]

    1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  • ^ "NIST Radionuclide Half-Life Measurements". NIST. Retrieved 2011-03-13.
  • ^ "Standard Atomic Weights: Caesium". CIAAW. 2013.
  • ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  • ^ Isoray. "Why Cesium-131".
  • ^ Although the phase used here is more terse than in the previous definition, it still has the same meaning. This is made clear in the 9th SI Brochure, which almost immediately after the definition on p. 130 states: "The effect of this definition is that the second is equal to the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the unperturbed ground state of the 133Cs atom."
  • ^ "Characteristics of Caesium-134 and Caesium-137". Japan Atomic Energy Agency. Archived from the original on 2016-03-04. Retrieved 2014-10-23.
  • ^ John L. Groh (2004). "Supplement to Chapter 11 of Reactor Physics Fundamentals" (PDF). CANTEACH project. Archived from the original (PDF) on 10 June 2011. Retrieved 14 May 2011.
  • ^ Hatsukawa, Y.; Shinohara, N; Hata, K.; et al. (1999). "Thermal neutron cross section and resonance integral of the reaction of135Cs(n,γ)136Cs: Fundamental data for the transmutation of nuclear waste". Journal of Radioanalytical and Nuclear Chemistry. 239 (3): 455–458. doi:10.1007/BF02349050. S2CID 97425651.
  • ^ Ohki, Shigeo; Takaki, Naoyuki (2002). "Transmutation of Cesium-135 With Fast Reactors" (PDF). Proceedings of the Seventh Information Exchange Meeting on Actinide and Fission Product Partitioning & Transmutation, Cheju, Korea.
  • ^ Dennis (1 March 2013). "Cooling a Hot Zone". Science. 339 (6123): 1028–1029. doi:10.1126/science.339.6123.1028. PMID 23449572.
  •  

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    Period

    Hydrogen and
    alkali metals

    Alkaline
    earth metals

    Pnicto­gens

    Chal­co­gens

    Halo­gens

    Noble gases

    Isotopes § List

    H

    1

    Isotopes § List

    He

    2

    Isotopes § List

    Li

    3

    Isotopes § List

    Be

    4

    Isotopes § List

    B

    5

    Isotopes § List

    C

    6

    Isotopes § List

    N

    7

    Isotopes § List

    O

    8

    Isotopes § List

    F

    9

    Isotopes § List

    Ne

    10

    Isotopes § List

    Na

    11

    Isotopes § List

    Mg

    12

    Isotopes § List

    Al

    13

    Isotopes § List

    Si

    14

    Isotopes § List

    P

    15

    Isotopes § List

    S

    16

    Isotopes § List

    Cl

    17

    Isotopes § List

    Ar

    18

    Isotopes § List

    K

    19

    Isotopes § List

    Ca

    20

    Isotopes § List

    Sc

    21

    Isotopes § List

    Ti

    22

    Isotopes § List

    V

    23

    Isotopes § List

    Cr

    24

    Isotopes § List

    Mn

    25

    Isotopes § List

    Fe

    26

    Isotopes § List

    Co

    27

    Isotopes § List

    Ni

    28

    Isotopes § List

    Cu

    29

    Isotopes § List

    Zn

    30

    Isotopes § List

    Ga

    31

    Isotopes § List

    Ge

    32

    Isotopes § List

    As

    33

    Isotopes § List

    Se

    34

    Isotopes § List

    Br

    35

    Isotopes § List

    Kr

    36

    Isotopes § List

    Rb

    37

    Isotopes § List

    Sr

    38

    Isotopes § List

    Y

    39

    Isotopes § List

    Zr

    40

    Isotopes § List

    Nb

    41

    Isotopes § List

    Mo

    42

    Isotopes § List

    Tc

    43

    Isotopes § List

    Ru

    44

    Isotopes § List

    Rh

    45

    Isotopes § List

    Pd

    46

    Isotopes § List

    Ag

    47

    Isotopes § List

    Cd

    48

    Isotopes § List

    In

    49

    Isotopes § List

    Sn

    50

    Isotopes § List

    Sb

    51

    Isotopes § List

    Te

    52

    Isotopes § List

    I

    53

    Isotopes § List

    Xe

    54

    Isotopes § List

    Cs

    55

    Isotopes § List

    Ba

    56

    1 asterisk

    Isotopes § List

    Lu

    71

    Isotopes § List

    Hf

    72

    Isotopes § List

    Ta

    73

    Isotopes § List

    W

    74

    Isotopes § List

    Re

    75

    Isotopes § List

    Os

    76

    Isotopes § List

    Ir

    77

    Isotopes § List

    Pt

    78

    Isotopes § List

    Au

    79

    Isotopes § List

    Hg

    80

    Isotopes § List

    Tl

    81

    Isotopes § List

    Pb

    82

    Isotopes § List

    Bi

    83

    Isotopes § List

    Po

    84

    Isotopes § List

    At

    85

    Isotopes § List

    Rn

    86

    Isotopes § List

    Fr

    87

    Isotopes § List

    Ra

    88

    1 asterisk

    Isotopes § List

    Lr

    103

    Isotopes § List

    Rf

    104

    Isotopes § List

    Db

    105

    Isotopes § List

    Sg

    106

    Isotopes § List

    Bh

    107

    Isotopes § List

    Hs

    108

    Isotopes § List

    Mt

    109

    Isotopes § List

    Ds

    110

    Isotopes § List

    Rg

    111

    Isotopes § List

    Cn

    112

    Isotopes § List

    Nh

    113

    Isotopes § List

    Fl

    114

    Isotopes § List

    Mc

    115

    Isotopes § List

    Lv

    116

    Isotopes § List

    Ts

    117

    Isotopes § List

    Og

    118

    Isotopes § List

    Uue

    119

    Isotopes § List

    Ubn

    120

    1 asterisk

    Isotopes § List

    La

    57

    Isotopes § List

    Ce

    58

    Isotopes § List

    Pr

    59

    Isotopes § List

    Nd

    60

    Isotopes § List

    Pm

    61

    Isotopes § List

    Sm

    62

    Isotopes § List

    Eu

    63

    Isotopes § List

    Gd

    64

    Isotopes § List

    Tb

    65

    Isotopes § List

    Dy

    66

    Isotopes § List

    Ho

    67

    Isotopes § List

    Er

    68

    Isotopes § List

    Tm

    69

    Isotopes § List

    Yb

    70

     

    1 asterisk

    Isotopes § List

    Ac

    89

    Isotopes § List

    Th

    90

    Isotopes § List

    Pa

    91

    Isotopes § List

    U

    92

    Isotopes § List

    Np

    93

    Isotopes § List

    Pu

    94

    Isotopes § List

    Am

    95

    Isotopes § List

    Cm

    96

    Isotopes § List

    Bk

    97

    Isotopes § List

    Cf

    98

    Isotopes § List

    Es

    99

    Isotopes § List

    Fm

    100

    Isotopes § List

    Md

    101

    Isotopes § List

    No

    102

  • Categories: Isotopes
  • Tables of nuclides
  • Metastable isotopes
  • Isotopes by element

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_caesium&oldid=1233865344#Caesium-133"

    Categories: 
    Isotopes of caesium
    Lists of isotopes by element
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from July 2024
    All articles needing additional references
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 11 July 2024, at 09:10 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki