Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Characteristics  



1.1  Physical characteristics  





1.2  Chemical characteristics  





1.3  Isotopes  





1.4  Occurrence  







2 Production  





3 Chemical compounds  





4 History  





5 Applications  



5.1  Nuclear reactors  





5.2  Alloys  





5.3  Microprocessors  





5.4  Isotope geochemistry  





5.5  Other uses  







6 Precautions  





7 References  





8 Literature  





9 External links  














Hafnium






Afrikaans

ि
العربية
Aragonés
Armãneashti
Asturianu
Azərbaycanca
Basa Bali

 / Bân-lâm-gú
Башҡортса
Беларуская
Беларуская (тарашкевіца)

Bikol Central
Български

Bosanski
Brezhoneg
Català
Чӑвашла
Cebuano
Čeština
Corsu
Cymraeg
Dansk
الدارجة
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Fiji Hindi
Français
Furlan
Gaeilge
Gaelg
Gàidhlig
Galego

/Hak-kâ-ngî
Хальмг

Հայերեն
ि
Hrvatski
Ido
Bahasa Indonesia
Interlingua
IsiZulu
Íslenska
Italiano
עברית
Jawa
Kabɩyɛ


Қазақша
Kernowek
Kiswahili
Коми
Kotava
Kurdî
Кыргызча
Кырык мары
Latina
Latviešu
Lëtzebuergesch
Lietuvių
Ligure
Limburgs
Livvinkarjala
La .lojban.
Lombard
Magyar
Македонски


مصرى
Bahasa Melayu
 / Mìng-dĕ̤ng-nḡ
Мокшень
Монгол

Nederlands
 

Nordfriisk
Norsk bokmål
Norsk nynorsk
Occitan
ି
Oʻzbekcha / ўзбекча

ि
پنجابی
پښتو
Piemontèis
Plattdüütsch
Polski
Português
Română
Runa Simi
Русский

Sardu
Scots
Seeltersk
Shqip
Sicilianu
Simple English
Slovenčina
Slovenščina
Soomaaliga
کوردی
Српски / srpski
Srpskohrvatski / српскохрватски
Sunda
Suomi
Svenska
Tagalog
ி
Татарча / tatarça


Тоҷикӣ
Türkçe
Українська
اردو
ئۇيغۇرچە / Uyghurche
Vepsän kel
Tiếng Vit

Winaray

Yorùbá


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 





This is a good article. Click here for more information.

From Wikipedia, the free encyclopedia
 


Hafnium, 72Hf

Hafnium

Pronunciation

/ˈhæfniəm/ (HAF-nee-əm)

Appearance

steel gray

Standard atomic weight Ar°(Hf)

  • 178.486±0.006[1]
  • 178.49±0.01 (abridged)[2]
  • Hafnium in the periodic table

    Fluorine

    Neon

    Sodium

    Magnesium

    Aluminium

    Silicon

    Phosphorus

    Sulfur

    Chlorine

    Argon

    Potassium

    Calcium

    Scandium

    Titanium

    Vanadium

    Chromium

    Manganese

    Iron

    Cobalt

    Nickel

    Copper

    Zinc

    Gallium

    Germanium

    Arsenic

    Selenium

    Bromine

    Krypton

    Rubidium

    Strontium

    Yttrium

    Zirconium

    Niobium

    Molybdenum

    Technetium

    Ruthenium

    Rhodium

    Palladium

    Silver

    Cadmium

    Indium

    Tin

    Antimony

    Tellurium

    Iodine

    Xenon

    Caesium

    Barium

    Lanthanum

    Cerium

    Praseodymium

    Neodymium

    Promethium

    Samarium

    Europium

    Gadolinium

    Terbium

    Dysprosium

    Holmium

    Erbium

    Thulium

    Ytterbium

    Lutetium

    Hafnium

    Tantalum

    Tungsten

    Rhenium

    Osmium

    Iridium

    Platinum

    Gold

    Mercury (element)

    Thallium

    Lead

    Bismuth

    Polonium

    Astatine

    Radon

    Francium

    Radium

    Actinium

    Thorium

    Protactinium

    Uranium

    Neptunium

    Plutonium

    Americium

    Curium

    Berkelium

    Californium

    Einsteinium

    Fermium

    Mendelevium

    Nobelium

    Lawrencium

    Rutherfordium

    Dubnium

    Seaborgium

    Bohrium

    Hassium

    Meitnerium

    Darmstadtium

    Roentgenium

    Copernicium

    Nihonium

    Flerovium

    Moscovium

    Livermorium

    Tennessine

    Oganesson

    Zr

    Hf

    Rf

    lutetiumhafniumtantalum

    Atomic number (Z)

    72

    Group

    group 4

    Period

    period 6

    Block

      d-block

    Electron configuration

    [Xe] 4f14 5d2 6s2

    Electrons per shell

    2, 8, 18, 32, 10, 2

    Physical properties

    Phase at STP

    solid

    Melting point

    2506 K ​(2233 °C, ​4051 °F)

    Boiling point

    4876 K ​(4603 °C, ​8317 °F)

    Density (at 20° C)

    13.281 g/cm3[3]

    when liquid (at m.p.)

    12 g/cm3

    Heat of fusion

    27.2 kJ/mol

    Heat of vaporization

    648 kJ/mol

    Molar heat capacity

    25.73 J/(mol·K)

    Vapor pressure

    P (Pa)

    1

    10

    100

    k

    10 k

    100 k

    at T (K)

    2689

    2954

    3277

    3679

    4194

    4876

    Atomic properties

    Oxidation states

    −2, 0, +1, +2, +3, +4 (an amphoteric oxide)

    Electronegativity

    Pauling scale: 1.3

    Ionization energies

    • 1st: 658.5 kJ/mol
  • 2nd: 1440 kJ/mol
  • 3rd: 2250 kJ/mol
  • Atomic radius

    empirical: 159 pm

    Covalent radius

    175±10 pm

    Color lines in a spectral range
    Spectral lines of hafnium

    Other properties

    Natural occurrence

    primordial

    Crystal structure

    hexagonal close-packed (hcp) (hP2)

    Lattice constants

    Hexagonal close packed crystal structure for hafnium

    a = 319.42 pm
    c = 505.12 pm (at 20 °C)[3]

    Thermal expansion

    5.9 µm/(m⋅K) (at 25 °C)

    Thermal conductivity

    23.0 W/(m⋅K)

    Electrical resistivity

    331 nΩ⋅m (at 20 °C)

    Magnetic ordering

    paramagnetic[4]

    Molar magnetic susceptibility

    +75.0×10−6 cm3/mol (at 298 K)[5]

    Young's modulus

    78 GPa

    Shear modulus

    30 GPa

    Bulk modulus

    110 GPa

    Speed of sound thin rod

    3010 m/s (at 20 °C)

    Poisson ratio

    0.37

    Mohs hardness

    5.5

    Vickers hardness

    1520–2060 MPa

    Brinell hardness

    1450–2100 MPa

    CAS Number

    7440-58-6

    History

    Naming

    after Hafnia. Latin for: Copenhagen, where it was discovered

    Prediction

    Dmitri Mendeleev (1869)

    Discovery and first isolation

    Dirk Coster and George de Hevesy (1922)

    Isotopes of hafnium
  • e
  • Main isotopes[6]

    Decay

    abun­dance

    half-life (t1/2)

    mode

    pro­duct

    172Hf

    synth

    1.87 y

    ε

    172Lu

    174Hf

    0.16%

    7.0×1016 y[7]

    α

    170Yb

    176Hf

    5.26%

    stable

    177Hf

    18.6%

    stable

    178Hf

    27.3%

    stable

    178m2Hf

    synth

    31 y

    IT

    178Hf

    179Hf

    13.6%

    stable

    180Hf

    35.1%

    stable

    182Hf

    synth

    8.9×106 y

    β

    182Ta

     Category: Hafnium
  • talk
  • edit
  • | references

    Hafnium is a chemical element; it has symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dmitri Mendeleev in 1869, though it was not identified until 1922, by Dirk Coster and George de Hevesy,[8][9] making it one of the last two stable elements to be discovered. (The element rhenium was found in 1908 by Masataka Ogawa, though its atomic number was misidentified at the time, and it was not generally recognised by the scientific community until its rediscovery by Walter Noddack, Ida Noddack, and Otto Berg in 1925. This makes it somewhat difficult to say if hafnium or rhenium was discovered last.)[10] Hafnium is named after Hafnia, the Latin name for Copenhagen, where it was discovered.[11][12]

    Hafnium is used in filaments and electrodes. Some semiconductor fabrication processes use its oxide for integrated circuits at 45 nanometers and smaller feature lengths. Some superalloys used for special applications contain hafnium in combination with niobium, titanium, or tungsten.

    Hafnium's large neutron capture cross section makes it a good material for neutron absorption in control rodsinnuclear power plants, but at the same time requires that it be removed from the neutron-transparent corrosion-resistant zirconium alloys used in nuclear reactors.

    Characteristics[edit]

    Physical characteristics[edit]

    Pieces of hafnium

    Hafnium is a shiny, silvery, ductile metal that is corrosion-resistant and chemically similar to zirconium[13] in that they have the same number of valence electrons and are in the same group. Also, their relativistic effects are similar: The expected expansion of atomic radii from period 5 to 6 is almost exactly canceled out by the lanthanide contraction. Hafnium changes from its alpha form, a hexagonal close-packed lattice, to its beta form, a body-centered cubic lattice, at 2388 K.[14] The physical properties of hafnium metal samples are markedly affected by zirconium impurities, especially the nuclear properties, as these two elements are among the most difficult to separate because of their chemical similarity.[13]

    A notable physical difference between these metals is their density, with zirconium having about one-half the density of hafnium. The most notable nuclear properties of hafnium are its high thermal neutron capture cross section and that the nuclei of several different hafnium isotopes readily absorb two or more neutrons apiece.[13] In contrast with this, zirconium is practically transparent to thermal neutrons, and it is commonly used for the metal components of nuclear reactors—especially the cladding of their nuclear fuel rods.

    Chemical characteristics[edit]

    Hafnium dioxide (HfO2)

    Hafnium reacts in air to form a protective film that inhibits further corrosion. Despite this, the metal is attacked by hydrofluoric acid and concentrated sulfuric acid, and can be oxidized with halogens or burnt in air. Like its sister metal zirconium, finely divided hafnium can ignite spontaneously in air. The metal is resistant to concentrated alkalis.

    As a consequence of lanthanide contraction, the chemistry of hafnium and zirconium is so similar that the two cannot be separated based on differing chemical reactions. The melting and boiling points of the compounds and the solubility in solvents are the major differences in the chemistry of these twin elements.[15]

    Isotopes[edit]

    At least 40 isotopes of hafnium have been observed, ranging in mass number from 153 to 192.[16][17][18] The five stable isotopes have mass numbers ranging from 176 to 180 inclusive. The radioactive isotopes' half-lives range from 400 ms for 153Hf[17]to7.0×1016 years for the most stable one, the primordial 174Hf.[16][7]

    The extinct radionuclide 182Hf has a half-life of 8.9±0.1 million years, and is an important tracker isotope for the formation of planetary cores.[19] The nuclear isomer 178m2Hf was at the center of a controversy for several years regarding its potential use as a weapon.

    Occurrence[edit]

    Zircon crystal (2×2 cm) from Tocantins, Brazil

    Hafnium is estimated to make up about between 3.0 and 4.8 ppm of the Earth's upper crust by mass.[20]: 5  [21] It does not exist as a free element on Earth, but is found combined in solid solution with zirconium in natural zirconium compounds such as zircon, ZrSiO4, which usually has about 1–4% of the Zr replaced by Hf. Rarely, the Hf/Zr ratio increases during crystallization to give the isostructural mineral hafnon (Hf,Zr)SiO4, with atomic Hf > Zr.[22] An obsolete name for a variety of zircon containing unusually high Hf content is alvite.[23]

    A major source of zircon (and hence hafnium) ores is heavy mineral sands ore deposits, pegmatites, particularly in Brazil and Malawi, and carbonatite intrusions, particularly the Crown Polymetallic Deposit at Mount Weld, Western Australia. A potential source of hafnium is trachyte tuffs containing rare zircon-hafnium silicates eudialyteorarmstrongite, at DubboinNew South Wales, Australia.[24]

    Production[edit]

    Melted tip of a hafnium consumable electrode used in an electron beam remelting furnace, a 1 cm cube, and an oxidized hafnium electron beam-remelted ingot (left to right)

    The heavy mineral sands ore deposits of the titanium ores ilmenite and rutile yield most of the mined zirconium, and therefore also most of the hafnium.[25]

    Zirconium is a good nuclear fuel-rod cladding metal, with the desirable properties of a very low neutron capture cross section and good chemical stability at high temperatures. However, because of hafnium's neutron-absorbing properties, hafnium impurities in zirconium would cause it to be far less useful for nuclear reactor applications. Thus, a nearly complete separation of zirconium and hafnium is necessary for their use in nuclear power. The production of hafnium-free zirconium is the main source of hafnium.[13]

    Hafnium oxidized ingots which exhibit thin-film optical effects

    The chemical properties of hafnium and zirconium are nearly identical, which makes the two difficult to separate.[26] The methods first used—fractional crystallization of ammonium fluoride salts[27] or the fractional distillation of the chloride[28]—have not proven suitable for an industrial-scale production. After zirconium was chosen as a material for nuclear reactor programs in the 1940s, a separation method had to be developed. Liquid–liquid extraction processes with a wide variety of solvents were developed and are still used for producing hafnium.[29] About half of all hafnium metal manufactured is produced as a by-product of zirconium refinement. The end product of the separation is hafnium(IV) chloride.[30] The purified hafnium(IV) chloride is converted to the metal by reduction with magnesiumorsodium, as in the Kroll process.[31]

    Further purification is effected by a chemical transport reaction developed by Arkel and de Boer: In a closed vessel, hafnium reacts with iodine at temperatures of 500 °C (900 °F), forming hafnium(IV) iodide; at a tungsten filament of 1,700 °C (3,100 °F) the reverse reaction happens preferentially, and the chemically bound iodine and hafnium dissociate into the native elements. The hafnium forms a solid coating at the tungsten filament, and the iodine can react with additional hafnium, resulting in a steady iodine turnover and ensuring the chemical equilibrium remains in favor of hafnium production.[15][32]

    Chemical compounds[edit]

    Due to the lanthanide contraction, the ionic radius of hafnium(IV) (0.78 ångström) is almost the same as that of zirconium(IV) (0.79 angstroms).[33] Consequently, compounds of hafnium(IV) and zirconium(IV) have very similar chemical and physical properties.[33] Hafnium and zirconium tend to occur together in nature and the similarity of their ionic radii makes their chemical separation rather difficult. Hafnium tends to form inorganic compounds in the oxidation state of +4. Halogens react with it to form hafnium tetrahalides.[33] At higher temperatures, hafnium reacts with oxygen, nitrogen, carbon, boron, sulfur, and silicon.[33] Some hafnium compounds in lower oxidation states are known.[34]

    Hafnium(IV) chloride and hafnium(IV) iodide have some applications in the production and purification of hafnium metal. They are volatile solids with polymeric structures.[15] These tetrachlorides are precursors to various organohafnium compounds such as hafnocene dichloride and tetrabenzylhafnium.

    The white hafnium oxide (HfO2), with a melting point of 2,812 °C and a boiling point of roughly 5,100 °C, is very similar to zirconia, but slightly more basic.[15] Hafnium carbide is the most refractory binary compound known, with a melting point over 3,890 °C, and hafnium nitride is the most refractory of all known metal nitrides, with a melting point of 3,310 °C.[33] This has led to proposals that hafnium or its carbides might be useful as construction materials that are subjected to very high temperatures. The mixed carbide tantalum hafnium carbide (Ta
    4
    HfC
    5
    ) possesses the highest melting point of any currently known compound, 4,263 K (3,990 °C; 7,214 °F).[35] Recent supercomputer simulations suggest a hafnium alloy with a melting point of 4,400 K.[36]

    History[edit]

    Photographic recording of the characteristic X-ray emission lines of some elements

    In his report on The Periodic Law of the Chemical Elements, in 1869, Dmitri Mendeleev had implicitly predicted the existence of a heavier analog of titanium and zirconium. At the time of his formulation in 1871, Mendeleev believed that the elements were ordered by their atomic masses and placed lanthanum (element 57) in the spot below zirconium. The exact placement of the elements and the location of missing elements was done by determining the specific weight of the elements and comparing the chemical and physical properties.[37]

    The X-ray spectroscopy done by Henry Moseley in 1914 showed a direct dependency between spectral line and effective nuclear charge. This led to the nuclear charge, or atomic number of an element, being used to ascertain its place within the periodic table. With this method, Moseley determined the number of lanthanides and showed the gaps in the atomic number sequence at numbers 43, 61, 72, and 75.[38]

    The discovery of the gaps led to an extensive search for the missing elements. In 1914, several people claimed the discovery after Henry Moseley predicted the gap in the periodic table for the then-undiscovered element 72.[39] Georges Urbain asserted that he found element 72 in the rare earth elements in 1907 and published his results on celtium in 1911.[40] Neither the spectra nor the chemical behavior he claimed matched with the element found later, and therefore his claim was turned down after a long-standing controversy.[41] The controversy was partly because the chemists favored the chemical techniques which led to the discovery of celtium, while the physicists relied on the use of the new X-ray spectroscopy method that proved that the substances discovered by Urbain did not contain element 72.[41] In 1921, Charles R. Bury[42][43] suggested that element 72 should resemble zirconium and therefore was not part of the rare earth elements group. By early 1923, Niels Bohr and others agreed with Bury.[44][45] These suggestions were based on Bohr's theories of the atom which were identical to chemist Charles Bury,[42] the X-ray spectroscopy of Moseley, and the chemical arguments of Friedrich Paneth.[46][47]

    Encouraged by these suggestions and by the reappearance in 1922 of Urbain's claims that element 72 was a rare earth element discovered in 1911, Dirk Coster and Georg von Hevesy were motivated to search for the new element in zirconium ores.[48] Hafnium was discovered by the two in 1923 in Copenhagen, Denmark, validating the original 1869 prediction of Mendeleev.[8][49] It was ultimately found in zircon in Norway through X-ray spectroscopy analysis.[50] The place where the discovery took place led to the element being named for the Latin name for "Copenhagen", Hafnia, the home town of Niels Bohr.[51] Today, the Faculty of Science of the University of Copenhagen uses in its seal a stylized image of the hafnium atom.[52]

    Hafnium was separated from zirconium through repeated recrystallization of the double ammoniumorpotassium fluorides by Valdemar Thal Jantzen and von Hevesey.[27] Anton Eduard van Arkel and Jan Hendrik de Boer were the first to prepare metallic hafnium by passing hafnium tetraiodide vapor over a heated tungsten filament in 1924.[28][32] This process for differential purification of zirconium and hafnium is still in use today.[13]

    In 1923, six predicted elements were still missing from the periodic table: 43 (technetium), 61 (promethium), 85 (astatine), and 87 (francium) are radioactive elements and are only present in trace amounts in the environment,[53] thus making elements 75 (rhenium) and 72 (hafnium) the last two unknown non-radioactive elements.

    Applications[edit]

    Most of the hafnium produced is used in the manufacture of control rods for nuclear reactors.[29]

    Several details contribute to the fact that there are only a few technical uses for hafnium: First, the close similarity between hafnium and zirconium makes it possible to use the more abundant zirconium for most applications; second, hafnium was first available as pure metal after the use in the nuclear industry for hafnium-free zirconium in the late 1950s. Furthermore, the low abundance and difficult separation techniques necessary make it a scarce commodity.[13] When the demand for hafnium-free zirconium dropped following the Fukushima disaster, the price of hafnium increased sharply from around $500–600/kg in 2014 to around $1000/kg in 2015.[54]

    Nuclear reactors[edit]

    The nuclei of several hafnium isotopes can each absorb multiple neutrons. This makes hafnium a good material for nuclear reactors' control rods. Its neutron capture cross section (Capture Resonance Integral Io ≈ 2000 barns)[55] is about 600 times that of zirconium (other elements that are good neutron-absorbers for control rods are cadmium and boron). Excellent mechanical properties and exceptional corrosion-resistance properties allow its use in the harsh environment of pressurized water reactors.[29] The German research reactor FRM II uses hafnium as a neutron absorber.[56] It is also common in military reactors, particularly in US naval submarine reactors, to slow reactor rates that are too high.[57][58] It is seldom found in civilian reactors, the first core of the Shippingport Atomic Power Station (a conversion of a naval reactor) being a notable exception.[59]

    Alloys[edit]

    Hafnium-containing rocket nozzle of the Apollo Lunar Module in the lower right corner

    Hafnium is used in alloys with iron, titanium, niobium, tantalum, and other metals. An alloy used for liquid-rocket thruster nozzles, for example the main engine of the Apollo Lunar Modules, is C103 which consists of 89% niobium, 10% hafnium and 1% titanium.[60]

    Small additions of hafnium increase the adherence of protective oxide scales on nickel-based alloys. It thereby improves the corrosion resistance, especially under cyclic temperature conditions that tend to break oxide scales, by inducing thermal stresses between the bulk material and the oxide layer.[61][62][63]

    Microprocessors[edit]

    Hafnium-based compounds are employed in gates of transistors as insulators in the 45 nm (and below) generation of integrated circuits from Intel, IBM and others.[64][65] Hafnium oxide-based compounds are practical high-k dielectrics, allowing reduction of the gate leakage current which improves performance at such scales.[66][67][68]

    Isotope geochemistry[edit]

    Isotopes of hafnium and lutetium (along with ytterbium) are also used in isotope geochemistry and geochronological applications, in lutetium-hafnium dating. It is often used as a tracer of isotopic evolution of Earth's mantle through time.[69] This is because 176Lu decays to 176Hf with a half-life of approximately 37 billion years.[70][71][72]

    In most geologic materials, zircon is the dominant host of hafnium (>10,000 ppm) and is often the focus of hafnium studies in geology.[73] Hafnium is readily substituted into the zircon crystal lattice, and is therefore very resistant to hafnium mobility and contamination. Zircon also has an extremely low Lu/Hf ratio, making any correction for initial lutetium minimal. Although the Lu/Hf system can be used to calculate a "model age", i.e. the time at which it was derived from a given isotopic reservoir such as the depleted mantle, these "ages" do not carry the same geologic significance as do other geochronological techniques as the results often yield isotopic mixtures and thus provide an average age of the material from which it was derived.

    Garnet is another mineral that contains appreciable amounts of hafnium to act as a geochronometer. The high and variable Lu/Hf ratios found in garnet make it useful for dating metamorphic events.[74]

    Other uses[edit]

    Due to its heat resistance and its affinity to oxygen and nitrogen, hafnium is a good scavenger for oxygen and nitrogen in gas-filled and incandescent lamps. Hafnium is also used as the electrode in plasma cutting because of its ability to shed electrons into the air.[75]

    The high energy content of 178m2Hf was the concern of a DARPA-funded program in the US. This program eventually concluded that using the above-mentioned 178m2Hfnuclear isomer of hafnium to construct high-yield weapons with X-ray triggering mechanisms—an application of induced gamma emission—was infeasible because of its expense. See hafnium controversy.

    Hafnium metallocene compounds can be prepared from hafnium tetrachloride and various cyclopentadiene-type ligand species. Perhaps the simplest hafnium metallocene is hafnocene dichloride. Hafnium metallocenes are part of a large collection of Group 4 transition metal metallocene catalysts [76] that are used worldwide in the production of polyolefin resins like polyethylene and polypropylene.

    A pyridyl-amidohafnium catalyst can be used for the controlled iso-selective polymerization of propylene which can then be combined with polyethylene to make a much tougher recycled plastic.[77]

    Hafnium diselenide is studied in spintronics thanks to its charge density wave and superconductivity.[78]

    Precautions[edit]

    Care needs to be taken when machining hafnium because it is pyrophoric—fine particles can spontaneously combust when exposed to air. Compounds that contain this metal are rarely encountered by most people. The pure metal is not considered toxic, but hafnium compounds should be handled as if they were toxic because the ionic forms of metals are normally at greatest risk for toxicity, and limited animal testing has been done for hafnium compounds.[79]

    People can be exposed to hafnium in the workplace by breathing, swallowing, skin, and eye contact. The Occupational Safety and Health Administration (OSHA) has set the legal limit (permissible exposure limit) for exposure to hafnium and hafnium compounds in the workplace as TWA 0.5 mg/m3 over an 8-hour workday. The National Institute for Occupational Safety and Health (NIOSH) has set the same recommended exposure limit (REL). At levels of 50 mg/m3, hafnium is immediately dangerous to life and health.[80]

    References[edit]

    1. ^ "Standard Atomic Weights: Hafnium". CIAAW. 2019.
  • ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  • ^ a b Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
  • ^ Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  • ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  • ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  • ^ a b Caracciolo, V.; Nagorny, S.; Belli, P.; et al. (2020). "Search for α decay of naturally occurring Hf-nuclides using a Cs2HfCl6 scintillator". Nuclear Physics A. 1002 (121941): 121941. arXiv:2005.01373. Bibcode:2020NuPhA100221941C. doi:10.1016/j.nuclphysa.2020.121941. S2CID 218487451.
  • ^ a b Coster, D.; Hevesy, G. (1923). "On the Missing Element of Atomic Number 72". Nature. 111 (2777): 79. Bibcode:1923Natur.111...79C. doi:10.1038/111079a0.
  • ^ "Two Danes Discover New Element, Hafnium – Detect It by Means of Spectrum Analysis of Ore Containing Zirconium", The New York Times, January 20, 1923, p. 4
  • ^ Hisamatsu, Yoji; Egashira, Kazuhiro; Maeno, Yoshiteru (2022). "Ogawa's nipponium and its re-assignment to rhenium". Foundations of Chemistry. 24: 15–57. doi:10.1007/s10698-021-09410-x.
  • ^ Authier, André (2013). Early Days of X-ray Crystallography. Oxford: Oxford University Press. p. 153. ISBN 978-0-19-163501-4.
  • ^ Knapp, Brian J. (2002). Francium to Polonium. Oxford: Atlantic Europe Publishing Company. p. 10. ISBN 0-7172-5677-4.
  • ^ a b c d e f Schemel, J. H. (1977). ASTM Manual on Zirconium and Hafnium. Vol. STP 639. Philadelphia: ASTM. pp. 1–5. ISBN 978-0-8031-0505-8.
  • ^ O'Hara, Andrew; Demkov, Alexander A. (2014). "Oxygen and nitrogen diffusion in α-hafnium from first principles". Applied Physics Letters. 104 (21): 211909. Bibcode:2014ApPhL.104u1909O. doi:10.1063/1.4880657.
  • ^ a b c d Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter. pp. 1056–1057. doi:10.1515/9783110206845. ISBN 978-3-11-007511-3.
  • ^ a b Barbalace, Kenneth L. "Periodic Table of Elements: Hf – Hafnium". environmentalchemistry.com. J.K. Barbalace Inc. Retrieved 2021-11-12.
  • ^ a b Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  • ^ Haak, K.; Tarasov, O. B.; Chowdhury, P.; et al. (2023). "Production and discovery of neutron-rich isotopes by fragmentation of 198Pt". Physical Review C. 108 (34608): 034608. Bibcode:2023PhRvC.108c4608H. doi:10.1103/PhysRevC.108.034608. S2CID 261649436.
  • ^ Kleine T, Walker RJ (August 2017). "Tungsten Isotopes in Planets". Annual Review of Earth and Planetary Sciences. 45 (1): 389–417. Bibcode:2017AREPS..45..389K. doi:10.1146/annurev-earth-063016-020037. PMC 6398955. PMID 30842690.
  • ^ Haygarth, John C.; Graham, Ronald A. (2013-09-30). Mishra, Brajendra (ed.). Zirconium and Hafnium. Hoboken, NJ, USA: John Wiley & Sons, Inc. pp. 1–71. doi:10.1002/9781118788417.ch1. ISBN 978-1-118-78841-7.
  • ^ ABUNDANCE OF ELEMENTS IN THE EARTH’S CRUST AND IN THE SEA, CRC Handbook of Chemistry and Physics, 97th edition (2016–2017), p. 14-17
  • ^ Deer, William Alexander; Howie, Robert Andrew; Zussmann, Jack (1982). The Rock-Forming Minerals: Orthosilicates. Vol. 1A. Longman Group Limited. pp. 418–442. ISBN 978-0-582-46526-8.
  • ^ Lee, O. Ivan (1928). "The Mineralogy of Hafnium". Chemical Reviews. 5 (1): 17–37. doi:10.1021/cr60017a002.
  • ^ Chalmers, Ian (June 2007). "The Dubbo Zirconia Project" (PDF). Alkane Resources Limited. Archived from the original (PDF) on 2008-02-28. Retrieved 2008-09-10.
  • ^ Gambogi, Joseph (2010). "2008 Minerals Yearbook: Zirconium and Hafnium". United States Geological Survey. Retrieved 2021-11-11.
  • ^ Larsen, Edwin M.; Fernelius, W. Conard; Quill, Laurence (1943). "Concentration of Hafnium. Preparation of Hafnium-Free Zirconia". Ind. Eng. Chem. Anal. Ed. 15 (8): 512–515. doi:10.1021/i560120a015.
  • ^ a b van Arkel, A. E.; de Boer, J. H. (1924). "Die Trennung von Zirkonium und Hafnium durch Kristallisation ihrer Ammoniumdoppelfluoride (The separation of zirconium and hafnium by crystallization of their double ammonium fluorides)". Zeitschrift für Anorganische und Allgemeine Chemie (in German). 141: 284–288. doi:10.1002/zaac.19241410117.
  • ^ a b van Arkel, A. E.; de Boer, J. H. (1924-12-23). "Die Trennung des Zirkoniums von anderen Metallen, einschließlich Hafnium, durch fraktionierte Distillation" [The separation of zirconium from other metals, including hafnium, by fractional distillation]. Zeitschrift für Anorganische und Allgemeine Chemie (in German). 141 (1): 289–296. doi:10.1002/zaac.19241410118.
  • ^ a b c Hedrick, James B. "Hafnium" (PDF). United States Geological Survey. Retrieved 2008-09-10.
  • ^ Griffith, Robert F. (1952). "Zirconium and hafnium". Minerals yearbook metals and minerals (except fuels). The first production plants Bureau of Mines. pp. 1162–1171.
  • ^ Gilbert, H. L.; Barr, M. M. (1955). "Preliminary Investigation of Hafnium Metal by the Kroll Process". Journal of the Electrochemical Society. 102 (5): 243. doi:10.1149/1.2430037.
  • ^ a b van Arkel, A. E.; de Boer, J. H. (1925). "Darstellung von reinem Titanium-, Zirkonium-, Hafnium- und Thoriummetall (Production of pure titanium, zirconium, hafnium and Thorium metal)". Zeitschrift für Anorganische und Allgemeine Chemie (in German). 148: 345–350. doi:10.1002/zaac.19251480133.
  • ^ a b c d e "Los Alamos National Laboratory – Hafnium". Retrieved 2008-09-10.
  • ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 971–975. ISBN 978-0-08-037941-8.
  • ^ Agte, C. & Alterthum, H. (1930). "Researches on Systems with Carbides at High Melting Point and Contributions to the Problem of Carbon Fusion". Z. Tech. Phys. 11: 182–191.
  • ^ Hong, Qi-Jun; van de Walle, Axel (2015). "Prediction of the material with highest known melting point from ab initio molecular dynamics calculations". Phys. Rev. B. 92 (2): 020104. Bibcode:2015PhRvB..92b0104H. doi:10.1103/PhysRevB.92.020104.
  • ^ Kaji, Masanori (2002). "D. I. Mendeleev's concept of chemical elements and The Principles of Chemistry" (PDF). Bulletin for the History of Chemistry. 27: 4. Archived from the original (PDF) on 2008-12-17. Retrieved 2008-08-20.
  • ^ Heilbron, John L. (1966). "The Work of H. G. J. Moseley". Isis. 57 (3): 336. doi:10.1086/350143. S2CID 144765815.
  • ^ Heimann, P. M. (1967). "Moseley and celtium: The search for a missing element". Annals of Science. 23 (4): 249–260. doi:10.1080/00033796700203306.
  • ^ Urbain, M. G. (1911). "Sur un nouvel élément qui accompagne le lutécium et le scandium dans les terres de la gadolinite: le celtium (On a new element that accompanies lutetium and scandium in gadolinite: celtium)". Comptes Rendus (in French): 141. Retrieved 2008-09-10.
  • ^ a b Mel'nikov, V. P. (1982). "Some Details in the Prehistory of the Discovery of Element 72". Centaurus. 26 (3): 317–322. Bibcode:1982Cent...26..317M. doi:10.1111/j.1600-0498.1982.tb00667.x.
  • ^ a b Kragh, Helge. "Niels Bohr's Second Atomic Theory." Historical Studies in the Physical Sciences, vol. 10, University of California Press, 1979, pp. 123–186, https://doi.org/10.2307/27757389.
  • ^ Bury, Charles R. (1921). "Langmuir's Theory of the Arrangement of Electrons in Atoms and Molecules". J. Am. Chem. Soc. 43 (7): 1602–1609. doi:10.1021/ja01440a023.
  • ^ Bohr, Niels (June 2008). The Theory of Spectra and Atomic Constitution: Three Essays. Kessinger. p. 114. ISBN 978-1-4365-0368-6.
  • ^ Niels Bohr (11 December 1922). "Nobel Lecture: The Structure of the Atom" (PDF). Retrieved 25 March 2021.
  • ^ Paneth, F. A. (1922). "Das periodische System (The periodic system)". Ergebnisse der Exakten Naturwissenschaften 1 (in German). p. 362.
  • ^ Fernelius, W. C. (1982). "Hafnium" (PDF). Journal of Chemical Education. 59 (3): 242. Bibcode:1982JChEd..59..242F. doi:10.1021/ed059p242. Archived from the original (PDF) on 2020-03-15. Retrieved 2009-09-03.
  • ^ Urbain, M. G. (1922). "Sur les séries L du lutécium et de l'ytterbium et sur l'identification d'un celtium avec l'élément de nombre atomique 72" [The L series from lutetium to ytterbium and the identification of element 72 celtium]. Comptes Rendus (in French). 174: 1347. Retrieved 2008-10-30.
  • ^ Hevesy, G. (1925). "The Discovery and Properties of Hafnium". Chemical Reviews. 2: 1–41. doi:10.1021/cr60005a001.
  • ^ von Hevesy, Georg (1923). "Über die Auffindung des Hafniums und den gegenwärtigen Stand unserer Kenntnisse von diesem Element". Berichte der Deutschen Chemischen Gesellschaft (A and B Series). 56 (7): 1503–1516. doi:10.1002/cber.19230560702. S2CID 96017606.
  • ^ Scerri, Eric R. (1994). "Prediction of the nature of hafnium from chemistry, Bohr's theory and quantum theory". Annals of Science. 51 (2): 137–150. doi:10.1080/00033799400200161.
  • ^ "University Life 2005" (pdf). University of Copenghagen. p. 43. Retrieved 2016-11-19.
  • ^ Curtis, David; Fabryka-Martin, June; Dixon, Pauland; Cramer, Jan (1999). "Nature's uncommon elements: plutonium and technetium". Geochimica et Cosmochimica Acta. 63 (2): 275–285. Bibcode:1999GeCoA..63..275C. doi:10.1016/S0016-7037(98)00282-8.
  • ^ Albrecht, Bodo (2015-03-11). "Weak Zirconium Demand Depleting Hafnium Stock Piles". Tech Metals Insider. KITCO. Archived from the original on 2021-04-28. Retrieved 4 March 2018.
  • ^ Noguère G., Courcelle A., Palau J.M., Siegler P. (2005) "Low-neutron-energy cross sections of the hafnium isotopes".
  • ^ "Forschungsreaktor München II (FRM-II): Standort und Sicherheitskonzept" (PDF). Strahlenschutzkommission. 1996-02-07. Archived from the original (PDF) on October 20, 2007. Retrieved 2008-09-22.
  • ^ J. H. Schemel (1977). ASTM Manual on Zirconium and Hafnium. ASTM International. p. 21. ISBN 978-0-8031-0505-8.
  • ^ World Book (2020 ed.). Chicago: Berkshire Hathaway. 2020. p. 5. ISBN 978-0-7166-0120-3.
  • ^ C.W. Forsberg; K. Takase & N. Nakatsuka (2011). "Water Reactor". In Xing L. Yan & Ryutaro Hino (eds.). Nuclear Hydrogen Production Handbook. CRC Press. p. 192. ISBN 978-1-4398-1084-2.
  • ^ Hebda, John (2001). "Niobium alloys and high Temperature Applications" (PDF). CBMM. Archived from the original (PDF) on 2008-12-17. Retrieved 2008-09-04.
  • ^ Maslenkov, S. B.; Burova, N. N.; Khangulov, V. V. (1980). "Effect of hafnium on the structure and properties of nickel alloys". Metal Science and Heat Treatment. 22 (4): 283–285. Bibcode:1980MSHT...22..283M. doi:10.1007/BF00779883. S2CID 135595958.
  • ^ Beglov, V. M.; Pisarev, B. K.; Reznikova, G. G. (1992). "Effect of boron and hafnium on the corrosion resistance of high-temperature nickel alloys". Metal Science and Heat Treatment. 34 (4): 251–254. Bibcode:1992MSHT...34..251B. doi:10.1007/BF00702544. S2CID 135844921.
  • ^ Voitovich, R. F.; Golovko, É. I. (1975). "Oxidation of hafnium alloys with nickel". Metal Science and Heat Treatment. 17 (3): 207–209. Bibcode:1975MSHT...17..207V. doi:10.1007/BF00663680. S2CID 137073174.
  • ^ US 6013553, Wallace, Robert M.; Stoltz, Richard A. & Wilk, Glen D., "Zirconium and/or hafnium oxynitride gate dielectric", published 2000-01-11, assigned to Texas Instruments Inc. 
  • ^ Markoff, John (2007-01-27). "Intel Says Chips Will Run Faster, Using Less Power". New York Times. Retrieved 2008-09-10.
  • ^ Fulton III, Scott M. (January 27, 2007). "Intel Reinvents the Transistor". BetaNews. Retrieved 2007-01-27.
  • ^ Robertson, Jordan (January 27, 2007). "Intel, IBM reveal transistor overhaul". The Associated Press. Retrieved 2008-09-10.
  • ^ "Atomic Layer Deposition (ALD)". Semiconductor Engineering. Retrieved 2023-04-30.
  • ^ Patchett, P. Jonathan (January 1983). "Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution". Geochimica et Cosmochimica Acta. 47 (1): 81–91. Bibcode:1983GeCoA..47...81P. doi:10.1016/0016-7037(83)90092-3.
  • ^ Söderlund, Ulf; Patchett, P. Jonathan; Vervoort, Jeffrey D.; Isachsen, Clark E. (March 2004). "The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions". Earth and Planetary Science Letters. 219 (3–4): 311–324. Bibcode:2004E&PSL.219..311S. doi:10.1016/S0012-821X(04)00012-3.
  • ^ Blichert-Toft, Janne; Albarède, Francis (April 1997). "The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system". Earth and Planetary Science Letters. 148 (1–2): 243–258. Bibcode:1997E&PSL.148..243B. doi:10.1016/S0012-821X(97)00040-X.
  • ^ Patchett, P. J.; Tatsumoto, M. (11 December 1980). "Lu–Hf total-rock isochron for the eucrite meteorites". Nature. 288 (5791): 571–574. Bibcode:1980Natur.288..571P. doi:10.1038/288571a0. S2CID 4284487.
  • ^ Kinny, P. D. (1 January 2003). "Lu-Hf and Sm-Nd isotope systems in zircon". Reviews in Mineralogy and Geochemistry. 53 (1): 327–341. Bibcode:2003RvMG...53..327K. doi:10.2113/0530327.
  • ^ Albarède, F.; Duchêne, S.; Blichert-Toft, J.; Luais, B.; Télouk, P.; Lardeaux, J.-M. (5 June 1997). "The Lu–Hf dating of garnets and the ages of the Alpine high-pressure metamorphism". Nature. 387 (6633): 586–589. Bibcode:1997Natur.387..586D. doi:10.1038/42446. S2CID 4260388.
  • ^ Ramakrishnany, S.; Rogozinski, M. W. (1997). "Properties of electric arc plasma for metal cutting". Journal of Physics D: Applied Physics. 30 (4): 636–644. Bibcode:1997JPhD...30..636R. doi:10.1088/0022-3727/30/4/019. S2CID 250746818.
  • ^ g. Alt, Helmut; Samuel, Edmond (1998). "Fluorenyl complexes of zirconium and hafnium as catalysts for olefin polymerization". Chem. Soc. Rev. 27 (5): 323–329. doi:10.1039/a827323z.
  • ^ Eagan, James (24 Feb 2017). "Combining polyethylene and polypropylene: Enhanced performance with PE/iPP multiblock polymers". Science. 355 (6327): 814–816. Bibcode:2017Sci...355..814E. doi:10.1126/science.aah5744. PMID 28232574. S2CID 206652330.
  • ^ Helmholtz Association of German Research Centres (September 7, 2022). "A new road towards spin-polarized currents". Nature Communications. 13 (1). Phys.org: 4147. doi:10.1038/s41467-022-31539-2. PMC 9288546. PMID 35842436. Archived from the original on September 9, 2022. Retrieved September 8, 2023.{{cite journal}}: CS1 maint: bot: original URL status unknown (link)
  • ^ "Occupational Safety & Health Administration: Hafnium". U.S. Department of Labor. Archived from the original on 2008-03-13. Retrieved 2008-09-10.
  • ^ "CDC – NIOSH Pocket Guide to Chemical Hazards – Hafnium". www.cdc.gov. Retrieved 2015-11-03.
  • Literature[edit]

    External links[edit]

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    1

    H

    He

    2

    Li

    Be

    B

    C

    N

    O

    F

    Ne

    3

    Na

    Mg

    Al

    Si

    P

    S

    Cl

    Ar

    4

    K

    Ca

    Sc

    Ti

    V

    Cr

    Mn

    Fe

    Co

    Ni

    Cu

    Zn

    Ga

    Ge

    As

    Se

    Br

    Kr

    5

    Rb

    Sr

    Y

    Zr

    Nb

    Mo

    Tc

    Ru

    Rh

    Pd

    Ag

    Cd

    In

    Sn

    Sb

    Te

    I

    Xe

    6

    Cs

    Ba

    La

    Ce

    Pr

    Nd

    Pm

    Sm

    Eu

    Gd

    Tb

    Dy

    Ho

    Er

    Tm

    Yb

    Lu

    Hf

    Ta

    W

    Re

    Os

    Ir

    Pt

    Au

    Hg

    Tl

    Pb

    Bi

    Po

    At

    Rn

    7

    Fr

    Ra

    Ac

    Th

    Pa

    U

    Np

    Pu

    Am

    Cm

    Bk

    Cf

    Es

    Fm

    Md

    No

    Lr

    Rf

    Db

    Sg

    Bh

    Hs

    Mt

    Ds

    Rg

    Cn

    Nh

    Fl

    Mc

    Lv

    Ts

    Og

    Hf(II)

    Hf(III)

  • HfI3
  • Hf(IV)

  • Hf3N4
  • HfBr4
  • HfCl4
  • HfF4
  • HfI4
  • Hf(C5H7O2)4
  • Hf(OSO2CF3)4
  • HfO2
  • Hf(NO3)4
  • HfSiO4
  • HfS2
  • La2Hf2O7
  • Ta4HfC5
  • CHf2N

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Hafnium&oldid=1235027947"

    Categories: 
    Hafnium
    Chemical elements
    Transition metals
    Neutron poisons
    1923 in science
    Chemical elements with hexagonal close-packed structure
    Hidden categories: 
    CS1: long volume value
    CS1 German-language sources (de)
    CS1 French-language sources (fr)
    CS1 maint: bot: original URL status unknown
    Articles with short description
    Short description is different from Wikidata
    Articles containing Latin-language text
    Commons link from Wikidata
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NDL identifiers
    Good articles
     



    This page was last edited on 17 July 2024, at 10:16 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki