Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Measurements and estimation  





3 Carrier-to-noise density ratio  





4 See also  





5 References  





6 Further reading  














Carrier-to-noise ratio






Català
فارسی

Italiano

Sunda
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Intelecommunications, the carrier-to-noise ratio, often written CNRorC/N, is the signal-to-noise ratio (SNR) of a modulated signal. The term is used to distinguish the CNR of the radio frequency passband signal from the SNR of an analog base band message signal after demodulation. For example, with FM radio, the strength of the 100 MHz carrier with modulations would be considered for CNR, whereas the audio frequency analogue message signal would be for SNR; in each case, compared to the apparent noise. If this distinction is not necessary, the term SNR is often used instead of CNR, with the same definition.

Digitally modulated signals (e.g. QAMorPSK) are basically made of two CW carriers (the I and Q components, which are out-of-phase carriers). In fact, the information (bits or symbols) is carried by given combinations of phase and/or amplitude of the I and Q components. It is for this reason that, in the context of digital modulations, digitally modulated signals are usually referred to as carriers. Therefore, the term carrier-to-noise-ratio (CNR), instead of signal-to-noise-ratio (SNR), is preferred to express the signal quality when the signal has been digitally modulated.

High C/N ratios provide good quality of reception, for example low bit error rate (BER) of a digital message signal, or high SNR of an analog message signal.

Definition[edit]

The carrier-to-noise ratio is defined as the ratio of the received modulated carrier signal power C to the received noise power N after the receiver filters:

.

When both carrier and noise are measured across the same impedance, this ratio can equivalently be given as:

,

where and are the root mean square (RMS) voltage levels of the carrier signal and noise respectively.

C/N ratios are often specified in decibels (dB):

or in term of voltage:

Measurements and estimation[edit]

The C/N ratio is measured in a manner similar to the way the signal-to-noise ratio (S/N) is measured, and both specifications give an indication of the quality of a communications channel.

In the famous Shannon–Hartley theorem, the C/N ratio is equivalent to the S/N ratio. The C/N ratio resembles the carrier-to-interference ratio (C/I, CIR), and the carrier-to-noise-and-interference ratio, C/(N+I)orCNIR.

C/N estimators are needed to optimize the receiver performance.[1] Typically, it is easier to measure the total power than the ratio of signal power to noise power (or noise power spectral density), and that is why CNR estimation techniques are timely and important.

Carrier-to-noise density ratio[edit]

Insatellite communications, carrier-to-noise-density ratio (C/N0) is the ratio of the carrier power C to the noise power density N0, expressed in dB-Hz. When considering only the receiver as a source of noise, it is called carrier-to-receiver-noise-density ratio.

It determines whether a receiver can lock on to the carrier and if the information encoded in the signal can be retrieved, given the amount of noise present in the received signal. The carrier-to-receiver noise density ratio is usually expressed in dB-Hz.

The noise power density, N0=kT, is the receiver noise power per hertz, which can be written in terms of the Boltzmann constant k (in joules per kelvin) and the noise temperature T (in kelvins).

See also[edit]

References[edit]

  1. ^ Islam, A. K. M. Najmul; Lohan, E. S.; Renfors, M. (Mar 2008). "Moment based CNR estimators for BOC/BPSK modulated signal for Galileo/GPS". 2008 5th Workshop on Positioning, Navigation and Communication. pp. 129–136. doi:10.1109/WPNC.2008.4510366. ISBN 978-1-4244-1798-8. S2CID 8008857.

Public Domain This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22. (in support of MIL-STD-188).

Further reading[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Carrier-to-noise_ratio&oldid=1136832146"

Categories: 
Noise (electronics)
Engineering ratios
Radio frequency propagation
Radio resource management
Interference
Hidden categories: 
Articles needing additional references from July 2016
All articles needing additional references
Articles needing additional references from September 2015
Wikipedia articles incorporating text from the Federal Standard 1037C
Wikipedia articles incorporating text from MIL-STD-188
Webarchive template wayback links
 



This page was last edited on 1 February 2023, at 11:01 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki