Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Cartan involutions on Lie algebras  



1.1  Examples  







2 Cartan pairs  





3 Cartan decomposition on the Lie group level  





4 Relation to polar decomposition  





5 See also  





6 Notes  





7 References  














Cartan decomposition






Deutsch
Français

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In mathematics, the Cartan decomposition is a decomposition of a semisimple Lie grouporLie algebra, which plays an important role in their structure theory and representation theory. It generalizes the polar decompositionorsingular value decomposition of matrices. Its history can be traced to the 1880s work of Élie Cartan and Wilhelm Killing.[1]

Cartan involutions on Lie algebras[edit]

Let be a real semisimple Lie algebra and let be its Killing form. An involutionon is a Lie algebra automorphism of whose square is equal to the identity. Such an involution is called a Cartan involutiononif is a positive definite bilinear form.

Two involutions and are considered equivalent if they differ only by an inner automorphism.

Any real semisimple Lie algebra has a Cartan involution, and any two Cartan involutions are equivalent.

Examples[edit]

Cartan pairs[edit]

Let be an involution on a Lie algebra . Since , the linear map has the two eigenvalues . If and denote the eigenspaces corresponding to +1 and -1, respectively, then . Since is a Lie algebra automorphism, the Lie bracket of two of its eigenspaces is contained in the eigenspace corresponding to the product of their eigenvalues. It follows that

, , and .

Thus is a Lie subalgebra, while any subalgebra of is commutative.

Conversely, a decomposition with these extra properties determines an involution on that is on and on.

Such a pair is also called a Cartan pairof, and is called a symmetric pair. This notion of a Cartan pair here is not to be confused with the distinct notion involving the relative Lie algebra cohomology .

The decomposition associated to a Cartan involution is called a Cartan decompositionof. The special feature of a Cartan decomposition is that the Killing form is negative definite on and positive definite on . Furthermore, and are orthogonal complements of each other with respect to the Killing form on .

Cartan decomposition on the Lie group level[edit]

Let be a non-compact semisimple Lie group and its Lie algebra. Let be a Cartan involution on and let be the resulting Cartan pair. Let be the analytic subgroupof with Lie algebra . Then:

The automorphism is also called the global Cartan involution, and the diffeomorphism is called the global Cartan decomposition. If we write this says that the product map is a diffeomorphism so .

For the general linear group, is a Cartan involution.[clarification needed]

A refinement of the Cartan decomposition for symmetric spaces of compact or noncompact type states that the maximal Abelian subalgebras in are unique up to conjugation by . Moreover,

where .

In the compact and noncompact case the global Cartan decomposition thus implies

Geometrically the image of the subgroup in is a totally geodesic submanifold.

Relation to polar decomposition[edit]

Consider with the Cartan involution .[clarification needed] Then is the real Lie algebra of skew-symmetric matrices, so that , while is the subspace of symmetric matrices. Thus the exponential map is a diffeomorphism from onto the space of positive definite matrices. Up to this exponential map, the global Cartan decomposition is the polar decomposition of a matrix. The polar decomposition of an invertible matrix is unique.

See also[edit]

Notes[edit]

References[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Cartan_decomposition&oldid=1160729979"

Categories: 
Lie groups
Lie algebras
Hidden categories: 
Articles with short description
Short description matches Wikidata
Wikipedia articles needing clarification from October 2020
Articles lacking in-text citations from March 2016
All articles lacking in-text citations
 



This page was last edited on 18 June 2023, at 11:48 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki