Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Synthesis  





2 Properties and applications  





3 Families  





4 Nomenclature  





5 See also  





6 References  





7 External links  














Catenane






العربية
Català
Deutsch
Español
Français

Italiano
Nederlands

Polski
Português
Română
Русский
Suomi
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Crystal structure of a catenane with a cyclobis(paraquat-p-phenylene) macrocycle reported by Stoddart and coworkers.[1]
Schematic animation of the template-directed synthesis of the bis-bipyridinium cyclophane / para-phenylene crown ether [2]catenane described in the text.
Crystal structure of a catenane reported by Sauvage and coworkers.[2]

Inmacromolecular chemistry, a catenane (from Latin catena 'chain') is a mechanically interlocked molecular architecture consisting of two or more interlocked macrocycles, i.e. a molecule containing two or more intertwined rings. The interlocked rings cannot be separated without breaking the covalent bonds of the macrocycles. They are conceptually related to other mechanically interlocked molecular architectures, such as rotaxanes, molecular knotsormolecular Borromean rings. Recently the terminology "mechanical bond" has been coined that describes the connection between the macrocycles of a catenane. Catenanes have been synthesised in two different ways: statistical synthesis and template-directed synthesis.

Synthesis

[edit]

There are two primary approaches to the organic synthesis of catenanes. The first is to simply perform a ring-closing reaction with the hope that some of the rings will form around other rings giving the desired catenane product. This so-called "statistical approach" led to the first synthesis of a catenane; however, the method is highly inefficient, requiring high dilution of the "closing" ring and a large excess of the pre-formed ring, and is rarely used.

The second approach relies on supramolecular preorganization of the macrocyclic precursors utilizing hydrogen bonding, metal coordination, hydrophobic effect, or coulombic interactions. These non-covalent interactions offset some of the entropic cost of association and help position the components to form the desired catenane upon the final ring-closing. This "template-directed" approach, together with the use of high-pressure conditions, can provide yields of over 90%, thus improving the potential of catenanes for applications. An example of this approach used bis-bipyridinium salts which form strong complexes threaded through crown ether bis(para-phenylene)-34-crown-10.[3]

Template directed syntheses are mostly performed under kinetic control, when the macrocyclization (catenation) reaction is irreversible. More recently, the groups of Sanders and Otto have shown that dynamic combinatorial approaches using reversible chemistry can be particularly successful in preparing new catenanes of unpredictable structure.[4] The thermodynamically controlled synthesis provides an error correction mechanism; even if a macrocycle closes without forming a catenane it can re-open and yield the desired interlocked structure later. The approach also provides information on the affinity constants between different macrocycles thanks to the equilibrium between the individual components and the catenanes, allowing a titration-like experiment.[5]

Properties and applications

[edit]

A particularly interesting property of many catenanes is the ability of the rings to rotate with respect to one another. This motion can often be detected and measured by NMR spectroscopy, among other methods. When molecular recognition motifs exist in the finished catenane (usually those that were used to synthesize the catenane), the catenane can have one or more thermodynamically preferred positions of the rings with respect to each other (recognition sites). In the case where one recognition site is a switchable moiety, a mechanical molecular switch results. When a catenane is synthesized by coordination of the macrocycles around a metal ion, then removal and re-insertion of the metal ion can switch the free motion of the rings on and off.

If there are more than one recognition sites it is possible to observe different colors depending on the recognition site the ring occupies and thus it is possible to change the color of the catenane solution by changing the preferred recognition site.[6] Switching between the two sites may be achieved by the use of chemical, electrochemical or even visible light based methods.

Catenanes have been synthesized incorporating many functional units, including redox-active groups (e.g. viologen, TTF=tetrathiafulvalene), photoisomerizable groups (e.g. azobenzene), fluorescent groups and chiral groups.[7] Some such units have been used to create molecular switches as described above, as well as for the fabrication of molecular electronic devices and molecular sensors.

Families

[edit]

There are a number of distinct methods of holding the precursors together prior to the ultimate ring-closing reaction in a template-directed catenane synthesis. Each noncovalent approach to catenane formation results in what can be considered different families of catenanes.

Another family of catenanes are called pretzelanesorbridged [2]catenanes after their likeness to pretzels with a spacer linking the two macrocycles. In one such system[8] one macrocycle is an electron deficient oligo Bis-bipyridinium ring and the other cycle is crown ether cyclophane based on para phenyleneornaphthalene. X-ray diffraction shows that due to pi-pi interactions the aromatic group of the cyclophane is held firmly inside the pyridinium ring. A limited number of (rapidly interchanging) conformers exist for this type of compound.

In handcuff-shaped catenanes,[9] two connected rings are threaded through the same ring. The bis-macrocycle (red) contains two phenanthroline units in a crown ether chain. The interlocking ring is self-assembled when two more phenanthroline units with alkene arms coordinate through a copper(I) complex followed by a metathesis ring closing step.

Families of catenanes
Catenanes
Pretzelanes
Handcuff-shaped catenanes

Nomenclature

[edit]

In catenane nomenclature, a number in square brackets precedes the word "catenane" in order to indicate how many rings are involved.[10] Discrete catenanes up to a [7]catenane have been synthesised.[11]

See also

[edit]

References

[edit]
  1. ^ Ashton, Peter R.; Brown, Christopher L.; Chrystal, Ewan J. T.; Goodnow, Timothy T.; Kaifer, Angel E.; Parry, Keith P.; Philp, Douglas; Slawin, Alexandra M. Z.; Spencer, Neil; Stoddart, J. Fraser; Williams, David J. (1991). "The self-assembly of a highly ordered [2]catenane". Journal of the Chemical Society, Chemical Communications (9): 634. doi:10.1039/C39910000634.
  • ^ Cesario, M.; Dietrich-Buchecker, C. O.; Guilhem, J.; Pascard, C.; Sauvage, J. P. (1985). "Molecular structure of a catenand and its copper(I) catenate: complete rearrangement of the interlocked macrocyclic ligands by complexation". Journal of the Chemical Society, Chemical Communications (5): 244. doi:10.1039/C39850000244.
  • ^ Ashton, Peter R.; Goodnow, Timothy T.; Kaifer, Angel E.; Reddington, Mark V.; Slawin, Alexandra M. Z.; Spencer, Neil; Fraser Stoddart, J.; Vicent, Cristina; Williams, David J. (1989-10-01). "Ein [2]-Catenan auf Bestellung". Angewandte Chemie. 101 (10): 1404–1408. Bibcode:1989AngCh.101.1404A. doi:10.1002/ange.19891011023. ISSN 1521-3757.
  • ^ T. S. R. Lam; A. Belenguer; S. L. Roberts; C. Naumann; T. Jarrosson; S. Otto; J. K. M. Sanders (April 2005). "Amplification of acetylcholine-binding catenanes from dynamic combinatorial libraries". Science. 308 (5722): 667–669. Bibcode:2005Sci...308..667L. doi:10.1126/science.1109999. PMID 15761119. S2CID 30506228.
  • ^ Li, J.; Nowak, P.; Fanlo-Virgos, H.; Otto, S. (2014). "Catenanes from Catenanes: Quantitative Assessment of Cooperativity in Dynamic Combinatorial Catenation". Chem. Sci. 5 (12): 4968–4974. doi:10.1039/C4SC01998A. hdl:11370/97ed22a2-ef35-42f8-bbef-34f2f32e2cb3.
  • ^ Sun, Junling; Wu, Yilei; Liu, Zhichang; Cao, Dennis; Wang, Yuping; Cheng, Chuyang; Chen, Dongyang; Wasielewski, Michael R.; Stoddart, J. Fraser (2015-06-18). "Visible Light-Driven Artificial Molecular Switch Actuated by Radical–Radical and Donor–Acceptor Interactions". The Journal of Physical Chemistry A. 119 (24): 6317–6325. Bibcode:2015JPCA..119.6317S. doi:10.1021/acs.jpca.5b04570. ISSN 1089-5639. PMID 25984816.
  • ^ Jamieson, E. M. G.; Modicom, F.; Goldup, S. M. (2018). "Chirality in rotaxanes and catenanes". Chemical Society Reviews. 47 (14): 5266–5311. doi:10.1039/C8CS00097B. PMC 6049620. PMID 29796501.Open access icon
  • ^ Liu, Y.; Vignon, S. A.; Zhang, X.; Bonvallet, P. A.; Khan, S. I.; Houk, K. N.; Stoddart, J. F. (November 2005). "Dynamic Chirality in Donor−Acceptor Pretzelanes". The Journal of Organic Chemistry. 70 (23): 9334–9344. doi:10.1021/jo051430g. PMID 16268606.
  • ^ Frey, Julien; Kraus, Tomáš; Heitz, Valérie; Sauvage, Jean-Pierre (2005). "A catenane consisting of a large ring threaded through both cyclic units of a handcuff-like compound". Chemical Communications (42): 5310–2. doi:10.1039/B509745B. PMID 16244738.
  • ^ Safarowsky, O.; Windisch, B.; Mohry, A.; Vögtle, F. (June 2000). "Nomenclature for Catenanes, Rotaxanes, Molecular Knots, and Assemblies Derived from These Structural Elements". Journal für Praktische Chemie. 342 (5): 437–444. doi:10.1002/1521-3897(200006)342:5<437::AID-PRAC437>3.0.CO;2-7.
  • ^ Black, Samuel P.; Stefankiewicz, Artur R.; Smulders, Maarten M. J.; Sattler, Dominik; Schalley, Christoph A.; Nitschke, Jonathan R.; Sanders, Jeremy K. M. (27 May 2013). "Generation of a Dynamic System of Three-Dimensional Tetrahedral Polycatenanes". Angewandte Chemie International Edition. 52 (22): 5749–5752. doi:10.1002/anie.201209708. PMC 4736444. PMID 23606312.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Catenane&oldid=1184197287"

    Categories: 
    Supramolecular chemistry
    Organic semiconductors
    Molecular topology
    Macrocycles
    Cyclophanes
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Commons category link is on Wikidata
    Articles with GND identifiers
    Articles containing video clips
     



    This page was last edited on 8 November 2023, at 23:07 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki