Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement  





2 Special cases  



2.1  In the case n = 3  







3 A simple proof  





4 Proof  





5 Relation to the generalized Kronecker delta  





6 Geometric interpretations  





7 Generalization  





8 Continuous version  





9 References  














CauchyBinet formula






العربية
Deutsch
Español
Français

Bahasa Indonesia
Italiano
עברית

Polski
Português
Русский
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, specifically linear algebra, the Cauchy–Binet formula, named after Augustin-Louis Cauchy and Jacques Philippe Marie Binet, is an identity for the determinant of the product of two rectangular matrices of transpose shapes (so that the product is well-defined and square). It generalizes the statement that the determinant of a product of square matrices is equal to the product of their determinants. The formula is valid for matrices with the entries from any commutative ring.

Statement[edit]

Let A be an m×n matrix and Bann×m matrix. Write [n] for the set {1, ..., n}, and for the set of m-combinations of [n] (i.e., subsets of [n] of size m; there are of them). For , write A[m],S for the m×m matrix whose columns are the columns of A at indices from S, and BS,[m] for the m×m matrix whose rows are the rows of B at indices from S. The Cauchy–Binet formula then states

Example: Taking m = 2 and n = 3, and matrices and , the Cauchy–Binet formula gives the determinant

Indeed , and its determinant is which equals from the right hand side of the formula.

Special cases[edit]

Ifn < m then is the empty set, and the formula says that det(AB) = 0 (its right hand side is an empty sum); indeed in this case the rank of the m×m matrix AB is at most n, which implies that its determinant is zero. If n = m, the case where A and B are square matrices, (asingleton set), so the sum only involves S = [n], and the formula states that det(AB) = det(A)det(B).

For m = 0, A and B are empty matrices (but of different shapes if n > 0), as is their product AB; the summation involves a single term S = Ø, and the formula states 1 = 1, with both sides given by the determinant of the 0×0 matrix. For m = 1, the summation ranges over the collection of the n different singletons taken from [n], and both sides of the formula give , the dot product of the pair of vectors represented by the matrices. The smallest value of m for which the formula states a non-trivial equality is m = 2; it is discussed in the article on the Binet–Cauchy identity.

In the case n = 3[edit]

Let be three-dimensional vectors.

In the case m > 3, the right-hand side always equals 0.

A simple proof[edit]

The following simple proof relies on two facts that can be proven in several different ways:[1]

  1. For any the coefficient of in the polynomial is the sum of the principal minors of .
  2. If and is an matrix and an matrix, then
.

Now, if we compare the coefficient of in the equation , the left hand side will give the sum of the principal minors of while the right hand side will give the constant term of , which is simply , which is what the Cauchy–Binet formula states, i.e.

Proof[edit]

There are various kinds of proofs that can be given for the Cauchy−Binet formula. The proof below is based on formal manipulations only, and avoids using any particular interpretation of determinants, which may be taken to be defined by the Leibniz formula. Only their multilinearity with respect to rows and columns, and their alternating property (vanishing in the presence of equal rows or columns) are used; in particular the multiplicative property of determinants for square matrices is not used, but is rather established (the case n = m). The proof is valid for arbitrary commutative coefficient rings.

The formula can be proved in two steps:

  1. use the fact that both sides are multilinear (more precisely 2m-linear) in the rowsofA and the columnsofB, to reduce to the case that each row of A and each column of B has only one non-zero entry, which is 1.
  2. handle that case using the functions [m] → [n] that map respectively the row numbers of A to the column number of their nonzero entry, and the column numbers of B to the row number of their nonzero entry.

For step 1, observe that for each row of A or column of B, and for each m-combination S, the values of det(AB) and det(A[m],S)det(BS,[m]) indeed depend linearly on the row or column. For the latter this is immediate from the multilinear property of the determinant; for the former one must in addition check that taking a linear combination for the row of A or column of B while leaving the rest unchanged only affects the corresponding row or column of the product AB, and by the same linear combination. Thus one can work out both sides of the Cauchy−Binet formula by linearity for every row of A and then also every column of B, writing each of the rows and columns as a linear combination of standard basis vectors. The resulting multiple summations are huge, but they have the same form for both sides: corresponding terms involve the same scalar factor (each is a product of entries of A and of B), and these terms only differ by involving two different expressions in terms of constant matrices of the kind described above, which expressions should be equal according to the Cauchy−Binet formula. This achieves the reduction of the first step.

Concretely, the multiple summations can be grouped into two summations, one over all functions f:[m] → [n] that for each row index of A gives a corresponding column index, and one over all functions g:[m] → [n] that for each column index of B gives a corresponding row index. The matrices associated to f and g are

where "" is the Kronecker delta, and the Cauchy−Binet formula to prove has been rewritten as

where p(f,g) denotes the scalar factor . It remains to prove the Cauchy−Binet formula for A = Lf and B = Rg, for all f,g:[m] → [n].

For this step 2, if f fails to be injective then Lf and LfRg both have two identical rows, and if g fails to be injective then Rg and LfRg both have two identical columns; in either case both sides of the identity are zero. Supposing now that both f and g are injective maps [m] → [n], the factor on the right is zero unless S = f([m]), while the factor is zero unless S = g([m]). So if the images of f and g are different, the right hand side has only null terms, and the left hand side is zero as well since LfRg has a null row (for i with ). In the remaining case where the images of f and g are the same, say f([m]) = S = g([m]), we need to prove that

Let h be the unique increasing bijection [m] → S, and π,σ the permutations of [m] such that and ; then is the permutation matrix for π, is the permutation matrix for σ, and LfRg is the permutation matrix for , and since the determinant of a permutation matrix equals the signature of the permutation, the identity follows from the fact that signatures are multiplicative.

Using multi-linearity with respect to both the rows of A and the columns of B in the proof is not necessary; one could use just one of them, say the former, and use that a matrix product LfB either consists of a permutation of the rows of Bf([m]),[m] (iff is injective), or has at least two equal rows.

Relation to the generalized Kronecker delta[edit]

As we have seen, the Cauchy–Binet formula is equivalent to the following:

where

In terms of generalized Kronecker delta, we can derive the formula equivalent to the Cauchy–Binet formula:

Geometric interpretations[edit]

IfA is a real m×n matrix, then det(A AT) is equal to the square of the m-dimensional volume of the parallelotope spanned in Rn by the m rows of A. Binet's formula states that this is equal to the sum of the squares of the volumes that arise if the parallelepiped is orthogonally projected onto the m-dimensional coordinate planes (of which there are ).

In the case m = 1 the parallelotope is reduced to a single vector and its volume is its length. The above statement then states that the square of the length of a vector is the sum of the squares of its coordinates; this is indeed the case by the definition of that length, which is based on the Pythagorean theorem.

Intensor algebra, given an inner product space of dimension n, the Cauchy–Binet formula defines an induced inner product on the exterior algebra , namely:

Generalization[edit]

The Cauchy–Binet formula can be extended in a straightforward way to a general formula for the minors of the product of two matrices. Context for the formula is given in the article on minors, but the idea is that both the formula for ordinary matrix multiplication and the Cauchy–Binet formula for the determinant of the product of two matrices are special cases of the following general statement about the minors of a product of two matrices. Suppose that A is an m × n matrix, B is an n × p matrix, I is a subset of {1,...,m} with k elements and J is a subset of {1,...,p} with k elements. Then

where the sum extends over all subsets K of {1,...,n} with k elements.

Continuous version[edit]

A continuous version of the Cauchy–Binet formula, known as the Andréief-Heine identity[2]orAndréief identity appears commonly in random matrix theory.[3] It is stated as follows: let and be two sequences of integrable functions, supported on . Then

Proof

Let be the permutation group of order N, be the sign of a permutation, be the "inner product".

Forrester[4] describes how to recover the usual Cauchy–Binet formula as a discretisation of the above identity.

Proof

Pick in, pick , such that and the same holds for and . Now plugging in and into the Andreev identity, and simplifying both sides, we get: The right side is , and the left side is .

References[edit]

  1. ^ Tao, Terence (2012). Topics in random matrix theory (PDF). Graduate Studies in Mathematics. Vol. 132. Providence, RI: American Mathematical Society. p. 253. doi:10.1090/gsm/132. ISBN 978-0-8218-7430-1.
  • ^ C. Andréief, Mem. de la Soc. Sci. de Bordeaux 2, 1 (1883)
  • ^ Mehta, M.L. (2004). Random Matrices (3rd ed.). Amsterdam: Elsevier/Academic Press. ISBN 0-12-088409-7.
  • ^ Forrester, Peter J. (2018). "Meet Andréief, Bordeaux 1886, and Andreev, Kharkov 1882–83". arXiv:1806.10411 [math-ph].

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Cauchy–Binet_formula&oldid=1218188500"

    Categories: 
    Determinants
    Augustin-Louis Cauchy
     



    This page was last edited on 10 April 2024, at 07:52 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki