Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Scalar case  



1.1  Proof  







2 Generalizations and applications  





3 References  





4 External links  














Cauchy formula for repeated integration






Català
Deutsch
Français
Italiano
עברית
Magyar

Português
Türkçe
Tiếng Vit
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Cauchy formula for repeated integration, named after Augustin-Louis Cauchy, allows one to compress n antiderivatives of a function into a single integral (cf. Cauchy's formula).

Scalar case

[edit]

Let f be a continuous function on the real line. Then the nthrepeated integraloff with base-point a, is given by single integration

Proof

[edit]

A proof is given by induction. The base case with n=1 is trivial, since it is equivalent to:

Now, suppose this is true for n, and let us prove it for n+1. Firstly, using the Leibniz integral rule, note that

Then, applying the induction hypothesis,

Note, the term within square bracket has n-times succesive integration, and upper limit of outermost integral inside the square bracket is . Thus, comparing with the case for n=n, and replacing of the formula at induction step n=n with respectively to obtain

Putting this expression inside the square bracket results in

This completes the proof.

Generalizations and applications

[edit]

The Cauchy formula is generalized to non-integer parameters by the Riemann-Liouville integral, where is replaced by , and the factorial is replaced by the gamma function. The two formulas agree when .

Both the Cauchy formula and the Riemann-Liouville integral are generalized to arbitrary dimensions by the Riesz potential.

Infractional calculus, these formulae can be used to construct a differintegral, allowing one to differentiate or integrate a fractional number of times. Differentiating a fractional number of times can be accomplished by fractional integration, then differentiating the result.

References

[edit]
[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Cauchy_formula_for_repeated_integration&oldid=1236083276"

Categories: 
Augustin-Louis Cauchy
Integral calculus
Theorems in analysis
Hidden categories: 
Articles with short description
Short description is different from Wikidata
Articles lacking in-text citations from May 2024
All articles lacking in-text citations
 



This page was last edited on 22 July 2024, at 20:27 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki