Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Hydrodynamic cavitation  





2 Cavitation in pumps  





3 See also  





4 References  














Cavitation number






Català
Deutsch
Español
Français

Türkçe
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


There are three dimensionless numbers that may be referred to as the cavitation number in various scenarios: the cavitation number for hydrodynamic cavitation, the Thoma number for cavitation in pumps, and the Garcia-Atance number for ultrasonic cavitation.

Hydrodynamic cavitation[edit]

The cavitation number (Ca) can be used to predict hydrodynamic cavitation. It has a similar structure as the Euler number, but a different meaning and use:

The cavitation number expresses the relationship between the difference of a local absolute pressure from the vapor pressure and the kinetic energy per volume, and is used to characterize the potential of the flow to cavitate.

It is defined as [1]

Application of the cavitation number to a propeller, a hydrofoil and a constriction.

where

The cavitation number serves as one of the primary methods for characterizing cavitation within a fluidic system. Low cavitation number indicates a higher probability of cavitation, while high cavitation number indicates no cavitation.

Within a fluid conduit, a pipe or a constraint, as the upstream pressure rises, so does the velocity of the working fluid. However, it's important to note that the increase rate of the square of the velocity greatly surpasses that of the pressure increase. Consequently, the cavitation number exhibits a declining trend with increasing upstream pressure, that is the situation where the system approaches the cavitation.

The inception of cavitation occurs when cavitating bubbles first appear within the system, marking the inception cavitation number. This value represents the highest cavitation number observed within the system in presence of cavitation. Researchers often aim to record cavitation inception at relatively low upstream pressures, particularly when they are pursuing non-destructive applications of this phenomenon.

As the development of cavitating flow progresses, the cavitation number steadily decreases until the system reaches the point of supercavitation, characterized by the highest achievable velocity and flowrate. Lower cavitation numbers are indicative of more intense cavitating flow.

Following supercavitation, the system reaches its fluid-handling limit, even as upstream pressure continues to rise. Consequently, the measured cavitation number embarks on an upward trajectory. This trend is a recurring observation in numerous published articles within the literature.[2]

Cavitation in pumps[edit]

The Thoma number () is a dimensionless quantity that can be used to predict cavitation in the suction of a pump. It is defined as[3]

Application of the Thoma number to a pump for prediction of cavitation

Where is the net positive suction head and is the hydraulic head developed by the pump. The fluid will cavitate in the suction of the pump if the Thoma number is smaller than the critical cavitation parameter or the critical Thoma number defined as

Where is the net positive suction head required to prevent cavitation. It is a parameter found experimentally for each pump model.

See also[edit]

References[edit]

  1. ^ Eisenberg, P.; David Taylor Model Basin Washington DC (1947). "A Cavitation Method for the Development of Forms Having Specified Critical Cavitation Numbers". David Taylor Model Basin Report. 647.
  • ^ Gevari, Moein Talebian; Ghorbani, Morteza; Svagan, Anna J.; Grishenkov, Dmitry; Kosar, Ali (2019-10-01). "Energy harvesting with micro scale hydrodynamic cavitation-thermoelectric generation coupling". AIP Advances. 9 (10): 105012. Bibcode:2019AIPA....9j5012G. doi:10.1063/1.5115336.
  • ^ Manderla, M.; Kiniger, K.; Koutnik, J. (2014). "Improved pump turbine transient behaviour prediction using a Thoma number-dependent hillchart model". IOP Conference Series: Earth and Environmental Science. 22 (3): 032039. Bibcode:2014E&ES...22c2039M. doi:10.1088/1755-1315/22/3/032039. ProQuest 2534467902.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Cavitation_number&oldid=1190857200"

    Category: 
    Dimensionless numbers of fluid mechanics
     



    This page was last edited on 20 December 2023, at 07:05 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki