Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Common components  



1.1  Donor antenna  





1.2  Indoor antenna  





1.3  Motor vehicle antenna  





1.4  Signal amplifier  







2 Reasons for weak signal  



2.1  Rural areas  





2.2  Building construction material  





2.3  Building size  





2.4  Multipath interference  





2.5  Diffraction and general attenuation  







3 Different operating frequencies  





4 Regional approval  



4.1  Approval in the US by the FCC  





4.2  Approval in the UK by Ofcom and the UK market  







5 See also  





6 References  





7 External Links  














Cellular repeater






Català
Dansk
Español
Bahasa Indonesia
Română
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Acellular repeater (also known as cell phone signal boosterorcell phone signal amplifier) is a type of bi-directional amplifier used to improve cell phone reception.[citation needed] A cellular repeater system commonly consists of a donor antenna that receives and transmits signal from nearby cell towers, coaxial cables, a signal amplifier, and an indoor rebroadcast antenna.[citation needed]

Common components[edit]

Donor antenna[edit]

A "donor antenna" is typically installed by a window or on the roof a building and used to communicate back to a nearby cell tower. A donor antenna can be any of several types, but is usually directionaloromnidirectional. An omnidirectional antenna (which broadcast in all directions) is typically used for a repeater system that amplify coverage for all cellular carriers. A directional antenna is used when a particular tower or carrier needs to be isolated for improvement. The use of a highly directional antenna can help improve the donor's signal-to-noise ratio, thus improving the quality of signal redistributed inside a building.

Indoor antenna[edit]

Some cellular repeater systems can also include an omnidirectional antenna for rebroadcasting the signal indoors. Depending on attenuation from obstacles, the advantage of using an omnidirectional antenna is that the signal will be equally distributed in all directions.

Motor vehicle antenna[edit]

When it is raining and the motor vehicle windows are closed a cell phone could lose between 50% and 100% of its reception. To rectify the reception an antenna is placed outside the vehicle and is wired to the inside of the vehicle to another antenna and amplifier to transmit the mobile phone signal to the cell phone inside the vehicle.

Signal amplifier[edit]

Cellular repeater systems include a signal amplifier. Standard GSM channel selective repeaters (operated by telecommunication operators for coverage of large areas and big buildings) have output power around 2 W, high power repeaters have output power around 10 W. The power gain is calculated by the following equation:

A repeater needs to secure sufficient isolation between the donor and the service antenna. When the isolation is lower than actual gain plus a margin (of typically 5–15 dB), the repeater may go into in loop oscillation. This oscillation can cause interference to the cellular network.

The isolation may be improved by antenna type selection in a macro environment, which involves adjusting the angle between the donor and service antennas (ideally 180°), space separation (typically the vertical distance in the case of the tower installation between donor and service antenna is several meters), insertion into an attenuating environment (e.g. installing a metal mesh between donor and service antennas), and/or reduction of reflections (no near obstacles in front of the donor antenna such as trees or buildings).[citation needed]

Isolation can be also improved by integrated feature called ICE (interference cancellation equipment) offered in some products (e.g., NodeG, RFWindow). Activation of this feature has a negative impact on internal delay (higher delay => approximately +5 μs up to standard rep. delay) and consequently a shorter radius from donor site. Amplification and filtering introduce a delay (typically between 5 and 15 μs), depending on the type of repeater and features used. Additional distance also adds propagation delay.

Reasons for weak signal[edit]

Rural areas[edit]

In many rural areas the housing density is too low to make construction of a new base station commercially viable. Installing a home cellular repeater may remedy this. In flat rural areas the signal is unlikely to suffer from multipath interference.

Building construction material[edit]

Certain construction materials can attenuate cell phone signal strength. Older buildings, such as churches, often block cellular signals. Any building that has a significant thickness of concrete, or a large amount of metal used in its construction, will attenuate the signal. Concrete floors are often poured onto a metal pan, which completely blocks most radio signals. Some solid foam insulation and some fiberglass insulation used in roofs or exterior walls have foil backing, which can reduce transmittance.[citation needed] Energy efficient windows and metal window screens are also very effective at blocking radio signals. Some materials have peaks in their absorption spectra, which decrease signal strength.

Building size[edit]

Large buildings, such as warehouses, hospitals, and factories, often lack cellular reception. Low signal strength also tends to occur in underground areas (such as basements, and in shops and restaurants located towards the centre of shopping malls). In these cases, an external antenna is usually used.

Multipath interference[edit]

Even in urban areas (which usually have strong cellular signals throughout), there may be dead zones caused by destructive interference of waves. These usually have an area of a few blocks and will usually only affect one of the two frequency ranges used by cell phones. This happens because different wavelengths of the different frequencies interfere destructively at different points. Directional antennas can be helpful at overcoming this issue since they may be used to select a single path from several (see Multipath interference for more details).

Diffraction and general attenuation[edit]

The longer wavelengths have the advantage of diffracting more, and so line of sight is not as necessary to obtain a good signal. Because the frequencies that cell phones use are too high to reflect off the ionosphereasshortwave radio waves do, cell phone waves cannot travel via the ionosphere. (See Diffraction and Attenuation for more details).

Different operating frequencies[edit]

Repeaters are available for all of the GSM frequency bands. Some repeaters will handle different types of networks (such as multi-mode GSM and UMTS). Repeater systems are available for certain Satellite phone systems, allowing these to be used indoors without a clear line of sight to the satellite.

Regional approval[edit]

Approval in the US by the FCC[edit]

It used to be legal to use the low power devices available for home and small scale use in commercial areas (offices, shops, bars, etc.).[1]

On February 20, 2013, the FCC released a Report & Order, thus establishing two Safe Harbors and defining the use of "network safe" consumer boosters on licensed spectrum. The Safe Harbors represent a compromise solution between Technology Manufacturers and Wireless Operators. Only a few companies have a product compatible with the new FCC regulations.

The FCC has defined two types of repeaters:

  1. Wide-band (or broadband) signal boosters are usually repeaters that amplify all frequencies from cell phone carriers. Because interferences can be generated from such boosters, the manufacturers who apply to the FCC must limit their gain (among other things), to 65 dB (for the low LTE 700 MHz bands) to 72 dB (for higher frequencies such as AWS). By limiting the system gain, such boosters are only useful when the outdoor signal is relatively high, and need a complex outdoor installation of specific antennas.
  2. Carrier specific (or provider specific) signal boosters. These boosters are only designed to boost those frequencies (and signal) that belong to a particular carrier. Usually, such carrier specific boosters do not produce interferences on other carrier's frequencies, and are allowed to have much larger system gains (sometimes 100 dB). In these conditions, such devices boost signal in a larger coverage area, and can still be efficient when outdoor carrier signals are weak, but are only boosting the signal for the carrier it is designed to operate.

These new rules by the FCC were implemented on March 1, 2014.

Approval in the UK by Ofcom and the UK market[edit]

In May 2011, Ofcom stated the following:

Installation or use of repeater devices (as with any radio equipment) is a criminal offence unless two conditions are satisfied:

  1. That the equipment is CE marked, indicating that the manufacturer has declared that it complies with all relevant EU regulatory requirements, including the Radio equipment and Telecommunications Terminal Equipment (R&TTE) Directive;
  2. That the use of the equipment is specifically authorised in the UK, either via a licence or by regulations made by Ofcom to exempt the use from licensing.[2]

Under WT Act 2006 section 1.15, the wireless act also allows an exemption if the device does not "involve undue interference with wireless telegraphy". This is expected to follow the US-style regulations where a mobile repeater must have protection built in against interference.

Ofcom stated that "Repeater devices transmit or re-transmit in the cellular frequency bands. Only the mobile network operators are licensed to use equipment that transmits in these bands. Installation or use of repeater devices by anyone without a licence is a criminal offence under Section 8 of the WT Act 2006."[3] Repeaters operating in rural and less densely populated areas do not pose a quantifiable problem.

See also[edit]

References[edit]

  1. ^ "FCC ruling on cellular repeaters". The Federal Communications Commission. Retrieved 2012-09-10.
  • ^ "Ofcom | Repeaters / Boosters / Enhancers". Licensing.ofcom.org.uk. Archived from the original on 2012-07-13. Retrieved 2012-07-26.
  • ^ "Mobile phone jammers and cellular enhancers". OFCOM Enforcing the Radio Spectrum. OFCOM. Retrieved 2012-07-17.
  • External Links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Cellular_repeater&oldid=1233269260"

    Categories: 
    Radio electronics
    Mobile technology
    Telecommunications infrastructure
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles with limited geographic scope from May 2010
    All articles with unsourced statements
    Articles with unsourced statements from July 2023
    Articles with unsourced statements from November 2017
     



    This page was last edited on 8 July 2024, at 05:45 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki