Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Central-peak craters  





2 When central peaks form  





3 Height of central peak relative to crater diameter  





4 See also  





5 References  














Complex crater






العربية

Català
Español
Bahasa Melayu
Português
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Central-peak crater)

Impact crater structure
Lunar crater Tycho

Complex craters are a type of large impact crater morphology. Complex craters are classified into two groups: central-peak craters and peak-ring craters. Peak-ring craters have diameters that are larger in than central-peak craters and have a ring of raised massifs which are roughly half the rim-to-rim diameter, instead of a central peak.[1]

Above a certain threshold size, which varies with planetary gravity, the collapse and modification of the transient cavity is much more extensive, and the resulting structure is called a complex crater. The collapse of the transient cavity is driven by gravity, and involves both the uplift of the central region and the inward collapse of the rim. The central uplift is not the result of elastic rebound which is a process in which a material with elastic strength attempts to return to its original geometry; rather the uplift is a process in which a material with little or no strength attempts to return to a state of gravitational equilibrium.[2]

Complex craters have uplifted centers, and they have typically broad flat shallow crater floors, and terraced walls. At the largest sizes, one or more exterior or interior rings may appear, and the structure may be labeled an impact basin rather than an impact crater. Complex-crater morphology on rocky planets appears to follow a regular sequence with increasing size: small complex craters with a central topographic peak are called central-peak craters, for example Tycho; intermediate-sized craters, in which the central peak is replaced by a ring of peaks, are called peak ring craters, for example Schrödinger; and the largest craters contain multiple concentric topographic rings, and are called multi-ringed basins, for example Orientale. On icy as opposed to rocky bodies, other morphological forms appear which may have central pits rather than central peaks, and at the largest sizes may contain very many concentric rings—ValhallaonCallisto is the type example of the latter.

Central-peak craters

[edit]
Eddie crater, a central peak-ring crater on Mars

A central-peak crater is the most basic form of complex crater. A central peak crater can have a tightly spaced, ring-like arrangement of peaks, thus be a peak ring crater, though the peak is often single.[3] Central-peak craters can occur in impact craters, via meteorites. An Earthly example is Mistastin crater, in Canada.[1] Many central-peak craters have rims that are scalloped, terraced inner walls, and hummocky floors.[4]

When central peaks form

[edit]

Diameters of craters where complex features form depends on the strength of gravity of the celestial body they occur on. Stronger gravity, such as on Earth compared to the Moon, causes rim collapse in smaller diameter craters. Complex craters may occur at 2 kilometres (1.2 mi) to 4 kilometres (2.5 mi) on Earth, but start from 20 kilometres (12 mi) on the Moon.[5]

Iflunar craters have diameters between about 20 kilometres (12 mi) to 175 kilometres (109 mi), the central peak is usually a single peak, or small group of peaks. Lunar craters of diameter greater than about 175 kilometres (109 mi) may have complex, ring-shaped uplifts. If impact features exceed 300 kilometres (190 mi) of diameter, they are called impact basins, not craters.[6]

Lunar craters of 35 kilometres (22 mi) to about 170 kilometres (110 mi) in diameter possess a central peak.[3]

There are several theories as to why central peak craters form. Such craters are common, on Earth, the Moon, Mars, and Mercury.[7][8]

Height of central peak relative to crater diameter

[edit]

On the Moon, heights of central peaks are directly proportional to diameters of craters, which implies that peak height varies with crater-forming energy.[3] There is a similar relationship for terrestrial meteorite craters, and TNT craters whose uplifts originated from rebound.[9]

See also

[edit]

References

[edit]
  1. ^ a b "Science Concept 6: The Moon is an Accessible Laboratory for Studying the Impact Process on Planetary Scales".
  • ^ French, Bevan M (1998). Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Houston, Texas: Lunar and Planetary Institute. pp. 120. LPI Contribution No. 954.
  • ^ a b c Bray, Veronica J. (November 20, 2015). "Central Peak Crater". Encyclopedia of Planetary Landforms. pp. 249–256. doi:10.1007/978-1-4614-3134-3_37. ISBN 978-1-4614-3133-6.
  • ^ Bray, Veronica J.; Öhman, Teemu; Hargitai, Henrik (2014). "Central Peak Crater". Encyclopedia of Planetary Landforms. pp. 1–9. doi:10.1007/978-1-4614-9213-9_37-2. ISBN 978-1-4614-9213-9.
  • ^ French, Bevan M (1998). Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Houston, Texas: Lunar and Planetary Institute. pp. 27. LPI Contribution No. 954.
  • ^ Millham, Rosemary. "Mapping The Surface of the Moon" (PDF).
  • ^ Allen, C. C. (April 12, 1975). "Central peaks in lunar craters". Moon. 12 (4): 463–474. Bibcode:1975Moon...12..463A. doi:10.1007/BF00577935. hdl:10150/622036. S2CID 120245830.
  • ^ Hodges, Carroll Ann (1992). "Atlas of Volcanic Landforms on Mars" (PDF). pubs.usgs.gov.
  • ^ Wood, Charles A. (December 1973). "Moon: Central peak heights and crater origins". Icarus. 20 (4): 503–506. doi:10.1016/0019-1035(73)90023-7.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Complex_crater&oldid=1234006891#Central-peak_craters"

    Categories: 
    Impact craters
    Impact geology
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Pages displaying short descriptions of redirect targets via Module:Annotated link
     



    This page was last edited on 12 July 2024, at 02:40 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki