Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 See also  





2 References  





3 External links  














Chamberlin trimetric projection







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A map of Africa in the Chamberlin Trimetric Projection
A map of Africa using the Chamberlin trimetric projection. The three red dots indicate the selected "base" locations: (22°N, 0°), (22°N, 45°E), (22°S, 22.5°E). 10° graticule.

The Chamberlin trimetric projection is a map projection where three points are fixed on the globe and the points on the sphere are mapped onto a plane by triangulation. It was developed in 1946 by Wellman Chamberlin for the National Geographic Society.[1] Chamberlin was chief cartographer for the Society from 1964 to 1971.[2] The projection's principal feature is that it compromises between distortions of area, direction, and distance. A Chamberlin trimetric map therefore gives an excellent overall sense of the region being mapped.[3] Many National Geographic Society maps of single continents use this projection.[2]

As originally implemented, the projection algorithm begins with the selection of three base points to form a spherical triangle minimally enclosing the area to be mapped. These points are mapped at the correct distance from each other according to the map’s chosen scale; aside from arbitrary rotation and translation, the position of the three points on the plane are unambiguous because a triangle is determined by the lengths of its sides. To map any point P, the spherical distances from each of the base points to P are calculated. Using each of the three mapped base points as center, a circle is drawn with radius equal to the scale spherical distance of P from the base point. The three circles will always intersect at one, two, or three points. Intersecting at one point happens only at the base points, which are already mapped and therefore need no further processing. Intersecting at two points happens only along the straight line between two mapped base points. Chamberlin did not specify how to handle this case, but it would be determined by which definition of triangle center is chosen, as noted next. In the remaining case, which is most of the map, connecting the three points of intersection of the circles by line segments creates a small triangle. The position of P′ is determined by the center of the triangle.[1] Chamberlin did not specify which definition of center to use.

A Chamberlin trimetric projection map was originally obtained by graphically mapping points at regular intervals of latitude and longitude, with shorelines and other features then mapped by interpolation. Based on the principles of the projection, precise, but lengthy, mathematical formulas were later developed for calculating this projection by computer for a spherical Earth.[2][3][4]

The Chamberlin trimetric projection is neither conformal nor equal-area. Rather, the projection was conceived to minimize distortion of distances everywhere with the side-effect of balancing between areal equivalence and conformality.[3] This projection is not appropriate for mapping the entire sphere because the outer boundary would loop and overlap itself in most configurations.

In some cases, the Chamberlin trimetric projection is difficult to distinguish visually from the Lambert azimuthal equal-area projection centered on the same area.[5]

See also[edit]

References[edit]

  1. ^ a b Chamberlin, Wellman (1947). The Round Earth on Flat Paper: Map Projections Used by Cartographers. Washington, D.C.: National Geographic Society. ASIN B000WTCPXE.
  • ^ a b c Snyder, John P. (1997). Flattening the earth: two thousand years of map projections. University of Chicago Press. ISBN 978-0-226-76747-5.
  • ^ a b c Christensen, Albert H.J. (1992). "The Chamberlin Trimetric Projection". Vol. 19, no. 2. Cartography and Geographic Information Science. pp. 88–100. doi:10.1559/152304092783786609.
  • ^ Bretterbauer, Kurt (1989). "Die trimetrische Projektion von W. Chamberlin". Vol. 39, no. 2. Kartographische Nachrichten. pp. 51–55.
  • ^ Dushaw, Brian (2009-12-18). "Notes on Mapping, Projections and Data Analysis". staff.washington.edu. Retrieved 2022-09-08.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Chamberlin_trimetric_projection&oldid=1214972979"

    Category: 
    Map projections
     



    This page was last edited on 22 March 2024, at 10:31 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki