Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Background  





3 Applications  



3.1  Storage and retrieval  



3.1.1  File formats  







3.2  Virtual libraries  





3.3  Virtual screening  





3.4  Quantitative structure-activity relationship (QSAR)  







4 See also  





5 References  





6 Further reading  





7 External links  














Cheminformatics






العربية
Български
Català
Čeština
Deutsch
Eesti
Ελληνικά
Español
فارسی
Français

Bahasa Indonesia
Italiano
עברית
Magyar
Македонски


Polski
Português
Română
Русский
Simple English
Slovenčina
Српски / srpski
Srpskohrvatski / српскохрватски
ி
Українська
Winaray

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Cheminformatics (also known as chemoinformatics) refers to the use of physical chemistry theory with computer and information science techniques—so called "in silico" techniques—in application to a range of descriptive and prescriptive problems in the field of chemistry, including in its applications to biology and related molecular fields. Such in silico techniques are used, for example, by pharmaceutical companies and in academic settings to aid and inform the process of drug discovery, for instance in the design of well-defined combinatorial libraries of synthetic compounds, or to assist in structure-based drug design. The methods can also be used in chemical and allied industries, and such fields as environmental science and pharmacology, where chemical processes are involved or studied.[1]

History

[edit]

Cheminformatics has been an active field in various guises since the 1970s and earlier, with activity in academic departments and commercial pharmaceutical research and development departments.[2][page needed][citation needed] The term chemoinformatics was defined in its application to drug discovery by F.K. Brown in 1998:[3]

Chemoinformatics is the mixing of those information resources to transform data into information and information into knowledge for the intended purpose of making better decisions faster in the area of drug lead identification and optimization.

Since then, both terms, cheminformatics and chemoinformatics, have been used,[citation needed] although, lexicographically, cheminformatics appears to be more frequently used,[when?][4][5] despite academics in Europe declaring for the variant chemoinformatics in 2006.[6] In 2009, a prominent Springer journal in the field was founded by transatlantic executive editors named the Journal of Cheminformatics.[7]

Background

[edit]

Cheminformatics combines the scientific working fields of chemistry, computer science, and information science—for example in the areas of topology, chemical graph theory, information retrieval and data mining in the chemical space.[8][page needed][9][page needed][10][11][page needed] Cheminformatics can also be applied to data analysis for various industries like paper and pulp, dyes and such allied industries.[12]

Applications

[edit]

Storage and retrieval

[edit]

A primary application of cheminformatics is the storage, indexing, and search of information relating to chemical compounds.[according to whom?][citation needed] The efficient search of such stored information includes topics that are dealt with in computer science, such as data mining, information retrieval, information extraction, and machine learning.[citation needed] Related research topics include:[citation needed]

  • Unstructured data
  • Structured data mining and mining of structured data
  • File formats

    [edit]

    The in silico representation of chemical structures uses specialized formats such as the Simplified molecular input line entry specifications (SMILES)[13] or the XML-based Chemical Markup Language.[14] These representations are often used for storage in large chemical databases.[citation needed] While some formats are suited for visual representations in two- or three-dimensions, others are more suited for studying physical interactions, modeling and docking studies.[citation needed]

    Virtual libraries

    [edit]

    Chemical data can pertain to real or virtual molecules. Virtual libraries of compounds may be generated in various ways to explore chemical space and hypothesize novel compounds with desired properties. Virtual libraries of classes of compounds (drugs, natural products, diversity-oriented synthetic products) were recently generated using the FOG (fragment optimized growth) algorithm.[15] This was done by using cheminformatic tools to train transition probabilities of a Markov chain on authentic classes of compounds, and then using the Markov chain to generate novel compounds that were similar to the training database.

    Virtual screening

    [edit]

    In contrast to high-throughput screening, virtual screening involves computationally screening in silico libraries of compounds, by means of various methods such as docking, to identify members likely to possess desired properties such as biological activity against a given target. In some cases, combinatorial chemistry is used in the development of the library to increase the efficiency in mining the chemical space. More commonly, a diverse library of small molecules or natural products is screened.

    Quantitative structure-activity relationship (QSAR)

    [edit]

    This is the calculation of quantitative structure–activity relationship and quantitative structure property relationship values, used to predict the activity of compounds from their structures. In this context there is also a strong relationship to chemometrics. Chemical expert systems are also relevant, since they represent parts of chemical knowledge as an in silico representation. There is a relatively new concept of matched molecular pair analysis or prediction-driven MMPA which is coupled with QSAR model in order to identify activity cliff.[16]

    See also

    [edit]
  • Chemical file format
  • Chemicalize.org
  • Cheminformatics toolkits
  • Chemogenomics
  • Computational chemistry
  • Information engineering
  • Journal of Chemical Information and Modeling
  • Journal of Cheminformatics
  • Materials informatics
  • Molecular design software
  • Molecular graphics
  • Molecular Informatics
  • Molecular modelling
  • Nanoinformatics
  • Software for molecular modeling
  • WorldWide Molecular Matrix
  • Molecular descriptor
  • References

    [edit]
    1. ^ Thomas Engel (2006). "Basic Overview of Chemoinformatics". J. Chem. Inf. Model. 46 (6): 2267–77. doi:10.1021/ci600234z. PMID 17125169.
  • ^ Martin, Yvonne Connolly (1978). Quantitative Drug Design: A Critical Introduction. Medicinal Research series. Vol. 8 (1st ed.). New York, NY: Marcel Dekker. ISBN 9780824765743.
  • ^ F.K. Brown (1998). "Ch. 35. Chemoinformatics: What is it and How does it Impact Drug Discovery". Annual Reports in Medicinal Chemistry. Vol. 33. pp. 375–384. doi:10.1016/S0065-7743(08)61100-8. ISBN 9780120405336.;[page needed] see also Brown, Frank (2005). "Chemoinformatics–A Ten Year Update". Current Opinion in Drug Discovery & Development. 8 (3): 296–302.
  • ^ "Cheminformatics or Chemoinformatics ?". Archived from the original on 2017-06-21. Retrieved 2006-03-31.
  • ^ "Biopharmaceutical glossary Tips & FAQs".
  • ^ http://infochim.u-strasbg.fr/chemoinformatics/Obernai%20Declaration.pdf Archived 2016-03-03 at the Wayback Machine [bare URL PDF]
  • ^ Willighagen, Egon. "Open Access Journal of Cheminformatics now live! « SteinBlog". Retrieved 2022-06-20.
  • ^ Gasteiger J.; Engel T., eds. (2004). Chemoinformatics: A Textbook. New York, NY: Wiley. ISBN 3527306811.
  • ^ Leach, A.R.; Gillet, V.J. (2003). An Introduction to Chemoinformatics. Berlin, DE: Springer. ISBN 1402013477.
  • ^ Varnek, A.; Baskin, I. (2011). "Chemoinformatics as a Theoretical Chemistry Discipline". Molecular Informatics. 30 (1): 20–32. doi:10.1002/minf.201000100. PMID 27467875. S2CID 21604072.
  • ^ Bunin, B.A.; Siesel, B.; Morales, G.; Bajorath J. (2006). Chemoinformatics: Theory, Practice, & Products. New York, NY: Springer. ISBN 9781402050008.
  • ^ Williams, Tova; University, North Carolina State. "Cheminformatics approaches to creating new hair dyes". phys.org. Retrieved 2022-06-20.
  • ^ Weininger, David (1988). "SMILES, a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules". Journal of Chemical Information and Modeling. 28 (1): 31–36. doi:10.1021/ci00057a005. S2CID 5445756.
  • ^ Murray-Rust, Peter; Rzepa, Henry S. (1999). "Chemical Markup, XML, and the Worldwide Web. 1. Basic Principles". Journal of Chemical Information and Computer Sciences. 39 (6): 928–942. doi:10.1021/ci990052b.
  • ^ Kutchukian, Peter; Lou, David; Shakhnovich, Eugene (2009). "FOG: Fragment Optimized Growth Algorithm for the de Novo Generation of Molecules occupying Druglike Chemical". Journal of Chemical Information and Modeling. 49 (7): 1630–1642. doi:10.1021/ci9000458. PMID 19527020.
  • ^ Sushko, Yurii; Novotarskyi, Sergii; Körner, Robert; Vogt, Joachim; Abdelaziz, Ahmed; Tetko, Igor V. (2014). "Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process". Journal of Cheminformatics. 6 (1): 48. doi:10.1186/s13321-014-0048-0. PMC 4272757. PMID 25544551.
  • Further reading

    [edit]
    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Cheminformatics&oldid=1231898779"

    Categories: 
    Cheminformatics
    Computational chemistry
    Drug discovery
    Computational fields of study
    Applied statistics
    Hidden categories: 
    Wikipedia articles needing page number citations from February 2020
    Webarchive template wayback links
    All articles with bare URLs for citations
    Articles with bare URLs for citations from March 2022
    Articles with PDF format bare URLs for citations
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from February 2020
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from February 2020
    All articles with vague or ambiguous time
    Vague or ambiguous time from February 2020
    All articles with specifically marked weasel-worded phrases
    Articles with specifically marked weasel-worded phrases from February 2020
    Articles lacking reliable references from February 2020
    All articles lacking reliable references
    Articles prone to spam from September 2018
    Articles with Curlie links
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NKC identifiers
     



    This page was last edited on 30 June 2024, at 21:46 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki