Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Biogeochemical cycle  



1.1  Terrestrial weathering and river transport  





1.2  Oceanic cycling  





1.3  Influence from other biogeochemical cycles  







2 Methods for chromium tracking  





3 References  














Chromium cycle







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Chromium cycles through the Earth atmosphere, soil, freshwater bodies, rivers, oceans, crust and mantle. The arrows indicate fluxes given in gigagrams (1,000 metric tons) of chromium per year. The corresponding stocks (inventories) indicate reservoirs of chromium given in gigagrams of chromium.

The chromium cycle is the biogeochemical cycle of chromium through the atmosphere, hydrosphere, biosphere and lithosphere.[1][2][3][4]

Biogeochemical cycle[edit]

Terrestrial weathering and river transport[edit]

Chromium has two common oxidation states relevant for environmental conditions: trivalent chromium, Cr(III) (reduced form), and hexavalent chromium, Cr(VI) (most oxidized form). The poorly soluble trivalent chromium cation (Cr3+
) strongly adsorbs onto clay particles and particulate organic matter, whereas the highly toxic and carcinogenic hexavalent chromate anion (CrO2−
4
) is soluble and non-sorbed, making it a toxic contaminant in environmental systems. Chromium commonly exists in soil and rocks as highly insoluble trivalent chromium, such as chromite (Fe(II)Cr(III)
2
O
4
, or FeO·Cr
2
O
3
), a mixed oxide mineral of the spinel group resembling magnetite (Fe
3
O
4
, Fe(II)Fe(III)
2
O
4
, or FeO·Fe
2
O
3
). Terrestrial weathering could cause trivalent chromium to be oxidizedbymanganese oxides to hexavalent chromium, which is then solubilized and cycled to the ocean through rivers. Estuaries release particulate chromium from rivers to the sea, increasing the dissolved fluxes of chromium to the ocean.[1]

Oceanic cycling[edit]

Soluble hexavalent chromium is the most common type of chromium in oceans, where over 70% of dissolved chromium in the ocean is found in oxyanions such as chromate (CrO2−
4
). Soluble trivalent chromium is also found in the oceans where complexation with organic ligands occurs. Chromium is estimated to have a residence time of 6,300 years in the oceans. Hexavalent chromium is reduced to trivalent chromium in oxygen minimum zones or at the surface of the ocean by divalent iron and organic ligands. There are four sinks of chromium from the oceans: (1) oxic sediments in pelagic zones, (2) hypoxic sediments in continental margins, (3) anoxicorsulfidic sediments in basinsorfjords with permanently anoxic or sulfidic (euxinic) bottom waters, and (4) marine carbonates.[1]

Influence from other biogeochemical cycles[edit]

Manganese (III) can oxidize Cr(III) to Cr(VI) when complexed with organic ligands.[5] This causes contaminant mobilization of Cr(VI), and also reduces Mn(III) to Mn(II), which can then be oxidized back to Mn(III) by oxygen.[5]

Methods for chromium tracking[edit]

Isotopic fractionation of chromium has become a valuable tool for monitoring environmental chromium contamination through recent advancements in mass spectrometry.[1] Isotope fractionation during river transport is determined by local redox conditions based on dissolved organic matter in rivers.[1]

References[edit]

  1. ^ a b c d e Wei, Wei; Klaebe, Robert; Ling, Hong-Fei; Huang, Fang; Frei, Robert (2020). "Biogeochemical cycle of chromium isotopes at the modern Earth's surface and its applications as a paleo-environment proxy". Chemical Geology. 541: 119570. doi:10.1016/j.chemgeo.2020.119570. ISSN 0009-2541. S2CID 216396303.
  • ^ Rauch, Jason N.; Pacyna, Jozef M. (2009). "Earth's global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles". Global Biogeochemical Cycles. 23 (2): GB2001. doi:10.1029/2008GB003376.
  • ^ Assessment, US EPA National Center for Environmental (2009). "Chromium life cycle study". hero.epa.gov. United States Environmental Protection Agency. Retrieved 2021-04-17.
  • ^ Johnson, C. Annette; Sigg, Laura; Lindauer, Ursula (1992). "The chromium cycle in a seasonally anoxic lake". Limnology and Oceanography. 37 (2): 315–321. doi:10.4319/lo.1992.37.2.0315. S2CID 86184086.
  • ^ a b Hansel, Colleen M.; Ferdelman, Timothy G.; Tebo, Bradley M. (2015). "Cryptic Cross-Linkages Among Biogeochemical Cycles: Novel Insights from Reactive Intermediates". Elements. 11 (6): 409–414. doi:10.2113/gselements.11.6.409. ISSN 1811-5209.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Chromium_cycle&oldid=1177331560"

    Categories: 
    Biogeochemical cycle
    Chromium
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 27 September 2023, at 06:04 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki