Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  



1.1  Bothe and Geiger, 1924-1925  





1.2  Bothe and Kohlhörster, 1929  





1.3  Rossi, 1930  







2 Probability  





3 See also  





4 References  














Coincidence circuit






فارسی

Norsk nynorsk
Русский
Türkçe
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inphysics and electrical engineering, a coincidence circuitorcoincidence gate is an electronic device with one output and two (or more) inputs. The output activates only when the circuit receives signals within a time window accepted as at the same time and in parallel at both inputs. Coincidence circuits are widely used in particle detectors and in other areas of science and technology.

Walther Bothe shared the Nobel Prize for Physics in 1954 "...for his discovery of the method of coincidence and the discoveries subsequently made by it." Bruno Rossi invented the electronic coincidence circuit for implementing the coincidence method.

History[edit]

Bothe and Geiger, 1924-1925[edit]

In his Nobel Prize lecture,[1] Bothe described how he had implemented the coincidence method in an experiment on Compton scattering in 1924. The experiment aimed to check whether Compton scattering produces a recoil electron simultaneously with the scattered gamma ray. Bothe used two point discharge counters connected to separate fibre electrometers and recorded the fibre deflections on a moving photographic film. On the film record he could discern coincident discharges with a time resolution of approximately 1 millisecond.

Bothe and Kohlhörster, 1929[edit]

In 1929, Walther Bothe and Werner Kolhörster published the description of a coincidence experiment with tubular discharge counters that Hans Geiger and Wilhelm Müller had invented in 1928. The Bothe-Kohlhörster experiment showed penetrating charged particles in cosmic rays. They used the same mechanical-photographic method for recording simultaneous discharges which, in this experiment, signalled the passage of a charged cosmic ray particle through both counters and through thick wall of lead and iron that surrounded the counters. Their paper, entitled Das Wesen der Höhenstrahlung", was published in the Zeitschrift für Physik v.56, p.751 (1929).

Rossi, 1930[edit]

Bruno Rossi, at the age of 24, was in his first job as assistant in the Physics Institute of the University of Florence when he read the Bothe-Kohlhörster paper. It inspired him to begin his own research on cosmic rays. He fabricated Geiger tubes according to the published recipe, and he invented the first practical electronic coincident circuit. It employed several triode vacuum tubes, and could register coincident pulses from any number of counters with a tenfold improvement in time resolution over the mechanical method of Bothe. Rossi described his invention in a paper entitled "Method of Registering Multiple Simultaneous Impulses of Several Geiger Counters", published in Nature v.125, p.636 (1930). The Rossi coincidence circuit was rapidly adopted by experimenters around the world. It was the first practical AND circuit, precursor of the AND logic circuits of electronic computers.

To detect the voltage pulse produced by the coincidence circuit when a coincidence event occurred, Rossi first used earphones and counted the ‘clicks’, and soon an electro-mechanical register to count the coincidence pulses automatically. Rossi used a triple-coincidence version of his circuit with various configurations of Geiger counters in a series of experiments during the period from 1930 to 1943 that laid an essential part of the foundations of cosmic-ray and particle physics.

About the same time, and independently of Rossi, Bothe devised a less practical electronic coincidence device. It used a single pentode vacuum tube and could register only twofold coincidences.

Probability[edit]

The main idea of 'coincidence detection' in signal processing is that if a detector detects a signal pulse in the midst of random noise pulses inherent in the detector, there is a certain probability, , that the detected pulse is actually a noise pulse. But if two detectors detect the signal pulse simultaneously, the probability that it is a noise pulse in the detectors is . Suppose . Then . Thus the chance of a false detection is reduced by the use of coincidence detection.

See also[edit]

References[edit]

  1. ^ Bothe, Walther (1954). "Nobel Lecture". Nobel Foundation.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Coincidence_circuit&oldid=1211254097"

Categories: 
Computer-related introductions in 1924
History of computing hardware
Experimental particle physics
Neuroethology concepts
Coincidence
Hidden categories: 
Articles needing additional references from February 2023
All articles needing additional references
 



This page was last edited on 1 March 2024, at 16:37 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki