Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  



1.1  Linear algebra  





1.2  Axiomatically  





1.3  Collineations of the projective line  







2 Types  



2.1  Projective linear transformations  





2.2  Automorphic collineations  







3 Fundamental theorem of projective geometry  



3.1  Linear structure  







4 History  





5 Anti-homography  





6 Notes  





7 References  





8 External links  














Collineation






Deutsch
Español
Magyar
Norsk nynorsk
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Collineation group)

Inprojective geometry, a collineation is a one-to-one and onto map (abijection) from one projective space to another, or from a projective space to itself, such that the imagesofcollinear points are themselves collinear. A collineation is thus an isomorphism between projective spaces, or an automorphism from a projective space to itself. Some authors restrict the definition of collineation to the case where it is an automorphism.[1] The set of all collineations of a space to itself form a group, called the collineation group.

Definition[edit]

Simply, a collineation is a one-to-one map from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. One may formalize this using various ways of presenting a projective space. Also, the case of the projective line is special, and hence generally treated differently.

Linear algebra[edit]

For a projective space defined in terms of linear algebra (as the projectivization of a vector space), a collineation is a map between the projective spaces that is order-preserving with respect to inclusion of subspaces.

Formally, let V be a vector space over a field K and W a vector space over a field L. Consider the projective spaces PG(V) and PG(W), consisting of the vector linesofV and W. Call D(V) and D(W) the set of subspaces of V and W respectively. A collineation from PG(V) to PG(W) is a map α : D(V) → D(W), such that:

Axiomatically[edit]

Given a projective space defined axiomatically in terms of an incidence structure (a set of points P, lines L, and an incidence relation I specifying which points lie on which lines, satisfying certain axioms), a collineation between projective spaces thus defined then being a bijective function f between the sets of points and a bijective function g between the set of lines, preserving the incidence relation.[3]

Every projective space of dimension greater than or equal to three is isomorphic to the projectivization of a linear space over a division ring, so in these dimensions this definition is no more general than the linear-algebraic one above, but in dimension two there are other projective planes, namely the non-Desarguesian planes, and this definition allows one to define collineations in such projective planes.

For dimension one, the set of points lying on a single projective line defines a projective space, and the resulting notion of collineation is just any bijection of the set.

Collineations of the projective line[edit]

For a projective space of dimension one (a projective line; the projectivization of a vector space of dimension two), all points are collinear, so the collineation group is exactly the symmetric group of the points of the projective line. This is different from the behavior in higher dimensions, and thus one gives a more restrictive definition, specified so that the fundamental theorem of projective geometry holds.

In this definition, when V has dimension two, a collineation from PG(V) to PG(W) is a map α : D(V) → D(W), such that:

This last requirement ensures that collineations are all semilinear maps.

Types[edit]

The main examples of collineations are projective linear transformations (also known as homographies) and automorphic collineations. For projective spaces coming from a linear space, the fundamental theorem of projective geometry states that all collineations are a combination of these, as described below.

Projective linear transformations[edit]

Projective linear transformations (homographies) are collineations (planes in a vector space correspond to lines in the associated projective space, and linear transformations map planes to planes, so projective linear transformations map lines to lines), but in general not all collineations are projective linear transformations. The group of projective linear transformations (PGL) is in general a proper subgroup of the collineation group.

Automorphic collineations[edit]

Anautomorphic collineation is a map that, in coordinates, is a field automorphism applied to the coordinates.

Fundamental theorem of projective geometry[edit]

If the geometric dimension of a pappian projective space is at least 2, then every collineation is the product of a homography (a projective linear transformation) and an automorphic collineation. More precisely, the collineation group is the projective semilinear group, which is the semidirect product of homographies by automorphic collineations.

In particular, the collineations of the real projective plane PG(2, R) are exactly the homographies, as R has no non-trivial automorphisms (see Automorphism#Examples and footnote dinReal number).

Suppose φ is a nonsingular semilinear map from VtoW, with the dimension of V at least three. Define α : D(V) → D(W) by saying that Zα = {φ(z) : zZ} for all ZinD(V). As φ is semilinear, one easily checks that this map is properly defined, and furthermore, as φ is not singular, it is bijective. It is obvious now that α is a collineation. We say that α is induced by φ.

The fundamental theorem of projective geometry states the converse:

Suppose V is a vector space over a field K with dimension at least three, W is a vector space over a field L, and α is a collineation from PG(V) to PG(W). This implies K and L are isomorphic fields, V and W have the same dimension, and there is a semilinear map φ such that φ induces α.

For n ≥ 3, the collineation group is the projective semilinear group, PΓL – this is PGL, twisted by field automorphisms; formally, the semidirect product PΓL ≅ PGL ⋊ Gal(K/k), where k is the prime field for K.

Linear structure[edit]

Thus for K a prime field (or), we have PGL = PΓL, but for K not a prime field (such as or for n ≥ 2), the projective linear group is in general a proper subgroup of the collineation group, which can be thought of as "transformations preserving a projective semi-linear structure". Correspondingly, the quotient group PΓL / PGL ≅ Gal(K/k) corresponds to "choices of linear structure", with the identity (base point) being the existing linear structure. Given a projective space without an identification as the projectivization of a linear space, there is no natural isomorphism between the collineation group and PΓL, and the choice of a linear structure (realization as projectivization of a linear space) corresponds to a choice of subgroup PGL < PΓL, these choices forming a torsor over Gal(K/k).

History[edit]

The idea of a line was abstracted to a ternary relation determined by collinearity (points lying on a single line). According to Wilhelm Blaschke[4] it was August Möbius that first abstracted this essence of geometrical transformation:

What do our geometric transformations mean now? Möbius threw out and fielded this question already in his Barycentric Calculus (1827). There he spoke not of transformations but of permutations [Verwandtschaften], when he said two elements drawn from a domain were permuted when they were interchanged by an arbitrary equation. In our particular case, linear equations between homogeneous point coordinates, Möbius called a permutation [Verwandtschaft] of both point spaces in particular a collineation. This signification would be changed later by Chaslestohomography. Möbius’ expression is immediately comprehended when we follow Möbius in calling points collinear when they lie on the same line. Möbius' designation can be expressed by saying, collinear points are mapped by a permutation to collinear points, or in plain speech, straight lines stay straight.

Contemporary mathematicians view geometry as an incidence structure with an automorphism group consisting of mappings of the underlying space that preserve incidence. Such a mapping permutes the lines of the incidence structure, and the notion of collineation persists.

As mentioned by Blaschke and Klein, Michel Chasles preferred the term homographytocollineation. A distinction between the terms arose when the distinction was clarified between the real projective plane and the complex projective line. Since there are no non-trivial field automorphisms of the real number field, all the collineations are homographies in the real projective plane,[5] however due to the field automorphism of complex conjugation, not all collineations of the complex projective line are homographies. In applications such as computer vision where the underlying field is the real number field, homography and collineation can be used interchangeably.

Anti-homography[edit]

The operation of taking the complex conjugate in the complex plane amounts to a reflection in the real line. With the notation z for the conjugate of z, an anti-homography is given by

Thus an anti-homography is the composition of conjugation with a homography, and so is an example of a collineation which is not an homography. For example, geometrically, the mapping amounts to circle inversion.[6] The transformations of inversive geometry of the plane are frequently described as the collection of all homographies and anti-homographies of the complex plane.[7]

Notes[edit]

  1. ^ For instance, Beutelspacher & Rosenbaum 1998, p.21, Casse 2006, p. 56 and Yale 2004, p. 226
  • ^ Geometers still commonly use an exponential type notation for functions and this condition will often appear as ABAαBα for all A, BinD(V).
  • ^ "Preserving the incidence relation" means that if point p is on line l then f(p) is in g(l); formally, if (p, l) ∈ I then (f(p), g(l)) ∈ I.
  • ^ Felix Klein (1926, 1949) Vorlesungen über Höhere Geometrie, edited by Blaschke, Seite 138
  • ^ Casse 2006, p. 64, Corollary 4.29
  • ^ Morley & Morley 1933, p. 38
  • ^ Blair 2000, p. 43; Schwerdtfeger 2012, p. 42.
  • References[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Collineation&oldid=1216337249"

    Category: 
    Projective geometry
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles with NKC identifiers
     



    This page was last edited on 30 March 2024, at 12:47 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki