Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Suitability  





2 Habitability  





3 Gravity  





4 In situ energy resources  





5 Flight  





6 See also  





7 References  





8 Further reading  














Colonization of Titan






Български
Català
Español
Français
Bahasa Indonesia
Italiano
Polski
Português
Română
Русский
Suomi
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Saturn's moon Titan in natural color

Saturn's largest moon Titan is one of several candidates for possible future colonization of the outer Solar System, though protection against extreme cold is a major consideration.

According to Cassini data from 2008, Titan has hundreds of times more liquid hydrocarbons than all the known oil and natural gas reserves on Earth. These hydrocarbons rain from the sky and collect in vast deposits that form lakes and dunes.[1] "Titan is just covered in carbon-bearing material—it's a Mega factory of organic chemicals", said Ralph Lorenz, who leads the study of Titan based on radar data from Cassini. "This vast carbon inventory is an important look into the geology and climate history of Titan." Several hundred lakes and seas have been observed, with several dozen estimated to contain more hydrocarbon liquid than Earth's oil and gas reserves. The dark dunes that run along the equator contain a volume of organics several hundred times larger than Earth's coal reserves.[2]

Titan 'sea' (left) compared at scale to Lake Superior (right)

Radar images obtained on July 21, 2006, appear to show lakes of liquid hydrocarbon (such as methane and ethane) in Titan's northern latitudes. This is the first discovery of currently existing lakes beyond Earth.[3] The lakes range in size from about a kilometer in width to one hundred kilometers across.

On March 13, 2007, the Jet Propulsion Laboratory announced that it found strong evidence of seas of methane and ethane in the northern hemisphere. At least one of these is larger than any of the Great LakesinNorth America.[4][clarification needed]

Suitability[edit]

The American aerospace engineer and author Robert Zubrin identified Saturn as the most important and valuable of the four gas giants in the Solar System, because of its relative proximity, low radiation, and excellent system of moons. He also named Titan as the most important moon on which to establish a base to develop the resources of the Saturn system.[5]

Habitability[edit]

Robert Zubrin has pointed out that Titan possesses an abundance of all the elements necessary to support life, saying "In certain ways, Titan is the most hospitable extraterrestrial world within our solar system for human colonization."[6] The atmosphere contains plentiful nitrogen and methane. Additionally, strong evidence indicates that liquid methane exists on the surface. Evidence also indicates the presence of liquid water and ammonia under the surface, which are delivered to the surface by volcanic activity. While this water can be used to generate breathable oxygen, more is blown into Titan's atmosphere from the geysers on the icy moon of Enceladus (also a moon of Saturn), as they start as water molecules and evolve into oxygen and hydrogen. Nitrogen is ideal to add buffer gas partial pressure to breathable air (it forms about 78% of Earth's atmosphere).[7] Nitrogen, methane and ammonia can all be used to produce fertilizer for growing food.

Gravity[edit]

Titan has a surface gravity of 0.138 g, slightly less than the Moon. Managing long-term effects of low gravity on human health[citation needed] would therefore be a significant issue for long-term occupation of Titan, more so than on Mars. These effects are still an active field of study. They can include symptoms such as loss of bone density, loss of muscle density, and a weakened immune system. Astronauts in Earth orbit have remained in microgravity for up to a year or more at a time. Effective countermeasures for the negative effects of low gravity are well-established, particularly an aggressive regimen of daily physical exercise or weighted clothing. The variation in the negative effects of low gravity as a function of different levels of low gravity are not known, since all research in this area is restricted to humans in zero gravity. The same goes for the potential effects of low gravity on fetal and pediatric development. It has been hypothesized that children born and raised in low gravity such as on Titan would not be well adapted for life under the higher gravity of Earth.[8]

In situ energy resources[edit]

In situ energy resources on Titan for use by future humans include chemical, nuclear, wind, solar and hydropower. Electrical power could be produced using chemical power plants adding hydrogen to acetylene (i.e. hydrogenation; oxygen is not freely available), or turbines in large methane seas such as Kraken Mare where the tidal pull of Saturn causes up to a meter of tidal change each Titan day. Nuclear and solar power might also be feasible.[citation needed]

Flight[edit]

The very high ratio of atmospheric density to surface gravity also greatly reduces the wingspan needed for an aircraft to maintain lift, so much so that a human would be able to strap on wings and easily fly through Titan's atmosphere while wearing a sort of spacesuit that could be manufactured with today's technology.[6] Another theoretically possible means to become airborne on Titan would be to use a hot air balloon-like vehicle filled with an Earth-like atmosphere at Earth-like temperatures (because oxygen is only slightly denser than nitrogen, the atmosphere in a habitat on Titan would be about one third as dense as the surrounding atmosphere), although such a vehicle would need a skin able to keep the extreme cold out in spite of the light weight required. Due to Titan's extremely low temperatures, heating of any flight-bound vehicle becomes a key obstacle.[9]

See also[edit]

References[edit]

  1. ^ Findings from the study led by Ralph Lorenz, Cassini radar team member from the Johns Hopkins University Applied Physics Laboratory, USA, are reported in the 29 January 2008 issue of the Geophysical Research Letters.
  • ^ "Titan's surface organics surpass oil reserves on Earth". European Space Agency. February 13, 2008. Retrieved October 20, 2016.
  • ^ "PIA08630: Lakes on Titan". Photojournal. NASA/JPL. July 24, 2006. Retrieved October 28, 2014.
  • ^ "Cassini Spacecraft Images Seas on Saturn's Moon Titan". Cassini Solstice Mission. NASA/JPL. March 13, 2007. Archived from the original on October 28, 2014. Retrieved October 28, 2014.
  • ^ Robert Zubrin, Entering Space: Creating a Spacefaring Civilization, section: The Persian Gulf of the solar system, pp. 161-163, Tarcher/Putnam, 1999, ISBN 978-1-58542-036-0
  • ^ a b Robert Zubrin, Entering Space: Creating a Spacefaring Civilization, section: Titan, pp. 163-166, Tarcher/Putnam, 1999, ISBN 978-1-58542-036-0
  • ^ Robert Zubrin, The Case for Mars: The Plan to Settle the Red Planet and Why We Must, p. 146, Simon & Schuster/Touchstone, 1996, ISBN 978-0-684-83550-1
  • ^ Robert Zubrin, "Colonizing the Outer Solar System", in Islands in the Sky: Bold New Ideas for Colonizing Space, pp. 85-94, Stanley Schmidt and Robert Zubrin, eds., Wiley, 1996, ISBN 978-0-471-13561-6
  • ^ Randall Munroe (2013). "Interplanetary Cessna". Retrieved January 29, 2013.
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Colonization_of_Titan&oldid=1219110595"

    Categories: 
    Titan (moon)
    Space colonization
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use American English from November 2020
    All Wikipedia articles written in American English
    Use mdy dates from November 2020
    Wikipedia articles needing clarification from March 2019
    All articles with unsourced statements
    Articles with unsourced statements from May 2020
    Articles with unsourced statements from June 2023
    Use American English from January 2014
     



    This page was last edited on 15 April 2024, at 20:18 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki