Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  





2 Properties  





3 Open manifolds  





4 Abuse of language  





5 Use in physics  





6 See also  





7 References  














Closed manifold






Deutsch
Esperanto
Nederlands

Português
Русский
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Compact manifold)

Inmathematics, a closed manifold is a manifold without boundary that is compact. In comparison, an open manifold is a manifold without boundary that has only non-compact components.

Examples[edit]

The only connected one-dimensional example is a circle. The sphere, torus, and the Klein bottle are all closed two-dimensional manifolds. The real projective space RPn is a closed n-dimensional manifold. The complex projective space CPn is a closed 2n-dimensional manifold.[1]Aline is not closed because it is not compact. A closed disk is a compact two-dimensional manifold, but it is not closed because it has a boundary.

Properties[edit]

Every closed manifold is a Euclidean neighborhood retract and thus has finitely generated homology groups.[2]

If is a closed connected n-manifold, the n-th homology group is or 0 depending on whether isorientable or not.[3] Moreover, the torsion subgroup of the (n-1)-th homology group is 0 or depending on whether is orientable or not. This follows from an application of the universal coefficient theorem.[4]

Let be a commutative ring. For -orientable with fundamental class , the map defined by is an isomorphism for all k. This is the Poincaré duality.[5] In particular, every closed manifold is -orientable. So there is always an isomorphism .

Open manifolds[edit]

For a connected manifold, "open" is equivalent to "without boundary and non-compact", but for a disconnected manifold, open is stronger. For instance, the disjoint union of a circle and a line is non-compact since a line is non-compact, but this is not an open manifold since the circle (one of its components) is compact.

Abuse of language[edit]

Most books generally define a manifold as a space that is, locally, homeomorphictoEuclidean space (along with some other technical conditions), thus by this definition a manifold does not include its boundary when it is embedded in a larger space. However, this definition doesn’t cover some basic objects such as a closed disk, so authors sometimes define a manifold with boundary and abusively say manifold without reference to the boundary. But normally, a compact manifold (compact with respect to its underlying topology) can synonymously be used for closed manifold if the usual definition for manifold is used.

The notion of a closed manifold is unrelated to that of a closed set. A line is a closed subset of the plane, and a manifold, but not a closed manifold.

Use in physics[edit]

The notion of a "closed universe" can refer to the universe being a closed manifold but more likely refers to the universe being a manifold of constant positive Ricci curvature.

See also[edit]

References[edit]

  1. ^ See Hatcher 2002, p.231
  • ^ See Hatcher 2002, p.536
  • ^ See Hatcher 2002, p.236
  • ^ See Hatcher 2002, p.238
  • ^ See Hatcher 2002, p.250

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Closed_manifold&oldid=1228503885"

    Categories: 
    Differential geometry
    Manifolds
    Geometric topology
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from March 2023
    All articles needing additional references
     



    This page was last edited on 11 June 2024, at 16:05 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki