Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  



1.1  Riemannian manifold  





1.2  General definition  





1.3  Conormal bundle  







2 Stable normal bundle  





3 Dual to tangent bundle  





4 For symplectic manifolds  





5 References  














Normal bundle






Deutsch
Ελληνικά
Français

Nederlands
Русский
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Indifferential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding (orimmersion).

Definition[edit]

Riemannian manifold[edit]

Let be a Riemannian manifold, and aRiemannian submanifold. Define, for a given , a vector to be normalto whenever for all (so that isorthogonalto). The set of all such is then called the normal spacetoat.

Just as the total space of the tangent bundle to a manifold is constructed from all tangent spaces to the manifold, the total space of the normal bundle[1] to is defined as

.

The conormal bundle is defined as the dual bundle to the normal bundle. It can be realised naturally as a sub-bundle of the cotangent bundle.

General definition[edit]

More abstractly, given an immersion (for instance an embedding), one can define a normal bundle of NinM, by at each point of N, taking the quotient space of the tangent space on M by the tangent space on N. For a Riemannian manifold one can identify this quotient with the orthogonal complement, but in general one cannot (such a choice is equivalent to a section of the projection ).

Thus the normal bundle is in general a quotient of the tangent bundle of the ambient space restricted to the subspace.

Formally, the normal bundle[2]toNinM is a quotient bundle of the tangent bundle on M: one has the short exact sequence of vector bundles on N:

where is the restriction of the tangent bundle on MtoN (properly, the pullback of the tangent bundle on M to a vector bundle on N via the map ). The fiber of the normal bundle in is referred to as the normal space at (ofin).

Conormal bundle[edit]

If is a smooth submanifold of a manifold , we can pick local coordinates around such that is locally defined by ; then with this choice of coordinates

and the ideal sheaf is locally generated by . Therefore we can define a non-degenerate pairing

that induces an isomorphism of sheaves . We can rephrase this fact by introducing the conormal bundle defined via the conormal exact sequence

,

then , viz. the sections of the conormal bundle are the cotangent vectors to vanishing on .

When is a point, then the ideal sheaf is the sheaf of smooth germs vanishing at and the isomorphism reduces to the definition of the tangent space in terms of germs of smooth functions on

.

Stable normal bundle[edit]

Abstract manifolds have a canonical tangent bundle, but do not have a normal bundle: only an embedding (or immersion) of a manifold in another yields a normal bundle. However, since every manifold can be embedded in , by the Whitney embedding theorem, every manifold admits a normal bundle, given such an embedding.

There is in general no natural choice of embedding, but for a given M, any two embeddings in for sufficiently large N are regular homotopic, and hence induce the same normal bundle. The resulting class of normal bundles (it is a class of bundles and not a specific bundle because N could vary) is called the stable normal bundle.

Dual to tangent bundle[edit]

The normal bundle is dual to the tangent bundle in the sense of K-theory: by the above short exact sequence,

in the Grothendieck group. In case of an immersion in , the tangent bundle of the ambient space is trivial (since is contractible, hence parallelizable), so , and thus .

This is useful in the computation of characteristic classes, and allows one to prove lower bounds on immersibility and embeddability of manifolds in Euclidean space.

For symplectic manifolds[edit]

Suppose a manifold is embedded in to a symplectic manifold , such that the pullback of the symplectic form has constant rank on . Then one can define the symplectic normal bundle to X as the vector bundle over X with fibres

where denotes the embedding. Notice that the constant rank condition ensures that these normal spaces fit together to form a bundle. Furthermore, any fibre inherits the structure of a symplectic vector space.[3]

ByDarboux's theorem, the constant rank embedding is locally determined by . The isomorphism

of symplectic vector bundles over implies that the symplectic normal bundle already determines the constant rank embedding locally. This feature is similar to the Riemannian case.

References[edit]

  1. ^ John M. Lee, Riemannian Manifolds, An Introduction to Curvature, (1997) Springer-Verlag New York, Graduate Texts in Mathematics 176 ISBN 978-0-387-98271-7
  • ^ Tammo tom Dieck, Algebraic Topology, (2010) EMS Textbooks in Mathematics ISBN 978-3-03719-048-7
  • ^ Ralph Abraham and Jerrold E. Marsden, Foundations of Mechanics, (1978) Benjamin-Cummings, London ISBN 0-8053-0102-X

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Normal_bundle&oldid=1095480227"

    Categories: 
    Algebraic geometry
    Differential geometry
    Differential topology
    Vector bundles
     



    This page was last edited on 28 June 2022, at 16:33 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki