Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Compounding frequency  





2 Annual equivalent rate  





3 Examples  





4 History  





5 Calculation  



5.1  Periodic compounding  





5.2  Accumulation function  





5.3  Continuous compounding  





5.4  Force of interest  





5.5  Compounding basis  





5.6  Monthly amortized loan or mortgage payments  



5.6.1  Exact formula for monthly payment  



5.6.1.1  Spreadsheet formula  







5.6.2  Approximate formula for monthly payment  





5.6.3  Example of mortgage payment  







5.7  Monthly deposits  







6 See also  





7 References  














Compound interest






العربية
Azərbaycanca
Català
Čeština
Dansk
Deutsch
Eesti
Español
Euskara
فارسی
Français
Gaeilge

Հայերեն
ि
Bahasa Indonesia
Íslenska
Italiano
עברית

Nederlands

Norsk bokmål

Polski
Русский
Slovenčina
Svenska
ி

Türkçe
Українська
اردو
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
Wikiquote
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Effective interest rates
The effect of earning 20% annual interest on an initial $1,000 investment and various compounding frequencies

Compound interestisinterest accumulated from a principal sum and previously accumulated interest. It is the result of reinvesting or retaining interest that would otherwise be paid out, or of the accumulation of debts from a borrower.

Compound interest is contrasted with simple interest, where previously accumulated interest is not added to the principal amount of the current period. Compounded interest depends on the simple interest rate applied and the frequency at which the interest is compounded.

Compounding frequency[edit]

The compounding frequency is the number of times per given unit of time the accumulated interest is capitalized, on a regular basis. The frequency could be yearly, half-yearly, quarterly, monthly, weekly, daily, continuously, or not at all until maturity.

For example, monthly capitalization with interest expressed as an annual rate means that the compounding frequency is 12, with time periods measured in months.

Annual equivalent rate[edit]

To help consumers compare retail financial products more fairly and easily, many countries require financial institutions to disclose the annual compound interest rate on deposits or advances on a comparable basis. The interest rate on an annual equivalent basis may be referred to variously in different markets as effective annual percentage rate (EAPR), annual equivalent rate (AER), effective interest rate, effective annual rate, annual percentage yield and other terms. The effective annual rate is the total accumulated interest that would be payable up to the end of one year, divided by the principal sum. These rates are usually the annualised compound interest rate alongside charges other than interest, such as taxes and other fees.

Examples[edit]

Compound interest of 15% on initial $10,000 investment over 40 years
Annual dividend of 1.5% on initial $10,000 investment
$266,864 in total dividend payments over 40 years
Dividends were not reinvested in this scenario
Inflation compounded over 40 years at different rates
  8%
  7%
  6%
  5%
  4%
  3%
  2%
  1%

History[edit]

Compound interest when charged by lenders was once regarded as the worst kind of usury and was severely condemned by Roman law and the common laws of many other countries.[2]

The Florentine merchant Francesco Balducci Pegolotti provided a table of compound interest in his book Pratica della mercatura of about 1340. It gives the interest on 100 lire, for rates from 1% to 8%, for up to 20 years.[3] The Summa de arithmeticaofLuca Pacioli (1494) gives the Rule of 72, stating that to find the number of years for an investment at compound interest to double, one should divide the interest rate into 72.

Richard Witt's book Arithmeticall Questions, published in 1613, was a landmark in the history of compound interest. It was wholly devoted to the subject (previously called anatocism), whereas previous writers had usually treated compound interest briefly in just one chapter in a mathematical textbook. Witt's book gave tables based on 10% (the maximum rate of interest allowable on loans) and other rates for different purposes, such as the valuation of property leases. Witt was a London mathematical practitioner and his book is notable for its clarity of expression, depth of insight, and accuracy of calculation, with 124 worked examples.[4][5]

Jacob Bernoulli discovered the constant in 1683 by studying a question about compound interest.

In the 19th century, and possibly earlier, Persian merchants used a slightly modified linear Taylor approximation to the monthly payment formula that could be computed easily in their heads.[6] In modern times, Albert Einstein's supposed quote regarding compound interest rings true. "He who understands it earns it; he who doesn't pays it."[7]

Calculation[edit]

Periodic compounding[edit]

The total accumulated value, including the principal sum plus compounded interest , is given by the formula:[8][9]

where:

The total compound interest generated is the final value minus the initial principal:[10]

Accumulation function[edit]

Since the principal P is simply a coefficient, it is often dropped for simplicity, and the resulting accumulation function is used instead. The accumulation function shows what $1 grows to after any length of time. The accumulation function for compound interest is:

Continuous compounding[edit]

When the number of compounding periods per year increases without limit, continuous compounding occurs, in which case the effective annual rate approaches an upper limit of er − 1. Continuous compounding can be regarded as letting the compounding period become infinitesimally small, achieved by taking the limitasn goes to infinity. The amount after t periods of continuous compounding can be expressed in terms of the initial amount P0 as:

Force of interest[edit]

As the number of compounding periods tends to infinity in continuous compounding, the continuous compound interest rate is referred to as the force of interest . For any continuously differentiable accumulation function a(t), the force of interest, or more generally the logarithmic or continuously compounded return, is a function of time as follows:

This is the logarithmic derivative of the accumulation function.

Conversely: (Since , this can be viewed as a particular case of a product integral.)

When the above formula is written in differential equation format, then the force of interest is simply the coefficient of amount of change:

For compound interest with a constant annual interest rate r, the force of interest is a constant, and the accumulation function of compounding interest in terms of force of interest is a simple power of e: or

The force of interest is less than the annual effective interest rate, but more than the annual effective discount rate. It is the reciprocal of the e-folding time.

A way of modeling the force of inflation is with Stoodley's formula: where p, r and s are estimated.

Compounding basis[edit]

To convert an interest rate from one compounding basis to another compounding basis, so that

use

where r1 is the interest rate with compounding frequency n1, and r2 is the interest rate with compounding frequency n2.

When interest is continuously compounded, use

where is the interest rate on a continuous compounding basis, and r is the stated interest rate with a compounding frequency n.

Monthly amortized loan or mortgage payments[edit]

The interest on loans and mortgages that are amortized—that is, have a smooth monthly payment until the loan has been paid off—is often compounded monthly. The formula for payments is found from the following argument.

Exact formula for monthly payment[edit]

An exact formula for the monthly payment () is or equivalently

where:

Spreadsheet formula[edit]

In spreadsheets, the PMT() function is used. The syntax is:

PMT(interest_rate, number_payments, present_value, future_value, [Type])

Approximate formula for monthly payment[edit]

A formula that is accurate to within a few percent can be found by noting that for typical U.S. note rates ( and terms =10–30 years), the monthly note rate is small compared to 1. so that the which yields the simplification:

which suggests defining auxiliary variables

Here is the monthly payment required for a zero–interest loan paid off in installments. In terms of these variables the approximation can be written .

Let . The expansion is valid to better than 1% provided .

Example of mortgage payment[edit]

For a $120,000 mortgage with a term of 30 years and a note rate of 4.5%, payable monthly, we find:

which gives

so that

The exact payment amount is so the approximation is an overestimate of about a sixth of a percent.

Monthly deposits[edit]

Given a principal deposit and a recurring deposit, the total return of an investment can be calculated via the compound interest gained per unit of time. If required, the interest on additional non-recurring and recurring deposits can also be defined within the same formula (see below).[11]

The compound interest for each deposit is: Adding all recurring deposits over the total period t, (i starts at 0 if deposits begin with the investment of principal; i starts at 1 if deposits begin the next month): Recognizing the geometric series: and applying the closed-form formula (common ratio :):

If two or more types of deposits occur (either recurring or non-recurring), the compound value earned can be represented as

where C is each lump sum and k are non-monthly recurring deposits, respectively, and x and y are the differences in time between a new deposit and the total period t is modeling.

A practical estimate for reverse calculation of the rate of return when the exact date and amount of each recurring deposit is not known, a formula that assumes a uniform recurring monthly deposit over the period, is:[12] or

See also[edit]

References[edit]

  1. ^ http://laws.justice.gc.ca/en/showdoc/cs/I-15/bo-ga:s_6//en#anchorbo-ga:s_6[permanent dead link] Interest Act (Canada), Department of Justice. The Interest Act specifies that interest is not recoverable unless the mortgage loan contains a statement showing the rate of interest chargeable, "calculated yearly or half-yearly, not in advance." In practice, banks use the half-yearly rate.
  • ^ Public Domain This article incorporates text from a publication now in the public domainChambers, Ephraim, ed. (1728). "Interest". Cyclopædia, or an Universal Dictionary of Arts and Sciences (1st ed.). James and John Knapton, et al.
  • ^ Evans, Allan (1936). Francesco Balducci Pegolotti, La Pratica della Mercatura. Cambridge, Massachusetts. pp. 301–2.{{cite book}}: CS1 maint: location missing publisher (link)
  • ^ Lewin, C G (1970). "An Early Book on Compound Interest - Richard Witt's Arithmeticall Questions". Journal of the Institute of Actuaries. 96 (1): 121–132. doi:10.1017/S002026810001636X.
  • ^ Lewin, C G (1981). "Compound Interest in the Seventeenth Century". Journal of the Institute of Actuaries. 108 (3): 423–442. doi:10.1017/S0020268100040865.
  • ^ Milanfar, Peyman (1996). "A Persian Folk Method of Figuring Interest". Mathematics Magazine. 69 (5): 376. doi:10.1080/0025570X.1996.11996479.
  • ^ Schleckser, Jim (January 21, 2020). "Why Einstein Considered Compound Interest the Most Powerful Force in the Universe: Is the power of compound interest really the 8th Wonder of the World?". Inc.
  • ^ "Compound Interest Formula". qrc.depaul.edu. Retrieved 2018-12-05.
  • ^ Investopedia Staff (2003-11-19). "Continuous Compounding". Investopedia. Retrieved 2018-12-05.
  • ^ "Compound Interest Formula - Explained". www.thecalculatorsite.com. Retrieved 2018-12-05.
  • ^ "Using Compound Interest to Optimize Investment Spread".
  • ^ http://moneychimp.com/features/portfolio_performance_calculator.htm "recommended by The Four Pillars of Investing and The Motley Fool"

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Compound_interest&oldid=1226343554"

    Categories: 
    Interest
    Exponentials
    Mathematical finance
    Actuarial science
    Hidden categories: 
    All articles with dead external links
    Articles with dead external links from February 2022
    Articles with permanently dead external links
    Wikipedia articles incorporating a citation from the 1728 Cyclopaedia
    Wikipedia articles incorporating text from Cyclopaedia
    CS1 maint: location missing publisher
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from June 2019
    All articles needing additional references
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Pages that use a deprecated format of the math tags
     



    This page was last edited on 30 May 2024, at 01:18 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki